
Combinatorial Testing and its
Applications

Rick Kuhn
National Institute of

Standards and Technology
Gaithersburg, MD

CS/SE 6367
Univ of Texas Dallas. June 15, 2023

What is NIST and why are we doing this?
• US Government agency, whose mission is to support US industry

through developing better measurement and test methods

• 3,000 scientists, engineers, and staff including 4 Nobel laureates

• Project goal – improve cost-benefit ratio for testing

Background

Why combinatorial testing? - examples
• Cooperative R&D Agreement w/ Lockheed Martin

• 2.5 year study, 8 Lockheed Martin pilot
projects in aerospace software

• Results: save 20% of test costs;
increase test coverage by 20% to 50%

Average software: testing typically 50% of total dev cost
Civil aviation: testing >85% of total dev cost (NASA rpt)

• Rockwell Collins applied NIST method and
tools on testing to FAA life-critical
standards
• Found practical for industrial use
• Enormous cost reduction

Applications
Software testing – primary application of these methods

• functionality testing and security vulnerabilities
• approx 2/3 of vulnerabilities from implementation faults

>> systems with a large number of factors that interact <<

Modeling and simulation – ensure coverage of complex cases
• measure coverage of traditional Monte Carlo sim
• faster coverage of input space than randomized input

Performance tuning – determine most effective combination
of configuration settings among a large set of factors

What is the empirical basis?
• NIST studied software failures in 15 years of

FDA medical device recall data
• What causes software failures?
• logic errors? calculation errors? inadequate

input checking? interaction faults? Etc.

Interaction faults: e.g., failure occurs if
altitude = 0 && volume < 2.2
(interaction between 2 factors)

So this is a 2-way interaction
=> testing all pairs of values can find this fault

How are interaction faults distributed?
• Interactions e.g., failure occurs if

pressure < 10 (1-way interaction)
pressure < 10 & volume > 300 (2-way interaction)
pressure < 10 & volume > 300 & velocity = 5 (3-way interaction)

• Surprisingly, no one had looked at interactions > 2-way before

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Interaction

%
 d

et
ec

te
d

65% of faults caused by single factor

96% of faults caused by single factor or 2-way interactions

Interesting, but that's
just one kind of
application!

Server

These faults
more complex
than medical
device
software!!

Why?

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

C
um

ul
at

iv
e

pe
rc

en
t o

f f
au

lts

Number of parameters involved in faults

FDA

Server

Browser

Curves appear
to be similar
across a variety
of application
domains.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

C
um

ul
at

iv
e

pe
rc

en
t o

f f
au

lts

Number of parameters involved in faults

FDA

Browse r

Server

NASA distributed database

Note: initial
testing
but ….
Fault profile
better than
medical
devices!

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

C
um

ul
at

iv
e

pe
rc

en
t o

f f
au

lts

Number of parameters involved in faults

FDA

Browse r

Server

NASA DB

MySQL

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

C
um

ul
at

iv
e

pe
rc

en
t o

f f
au

lts

Number of parameters involved in faults

FDA

Browse r

Server

NASA DB

MySQL

TCP/IP

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

C
um

ul
at

iv
e

pe
rc

en
t o

f f
au

lts

Number of parameters involved in faults

FDA

Browse r

Server

NASA DB

NW Sec

MySQL

Various domains collected

• Number of factors involved in failures is small
• No failure involving more than 6 variables has been seen

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Cumulative proportion of faults for t = 1..6

FDA Browser Server DBMS NW Sec

MySQL MySQL2 Apache2 DSCS NeoKylin

Average (unweighted)

What causes this distribution?

One clue: branches in avionics software.
7,685 expressions from if and while statements

Comparing with Failure Data
Branch
statements

• Distribution of t-way faults in untested software seems to be similar
to distribution of t-way branches in code

• Testing and use push curve down as easy (1-way, 2-way) faults found

Distribution of failures by number of interacting
variables

Interaction rule: most failures caused by
one factor or two interacting;
progressively fewer by ≥ 3 variables
interacting

• No failures involving more than 6
variables among these

• Untested (database) or smaller user base
applications (med devices) have simpler
faults than heavily used applications
(browser, server, SQL)

Why does this distribution occur?

Intuitively, simpler faults should be more common than complex
faults; should take longer to find complex faults

Can we develop a quantitative model?

• Start with two assumptions:
• t-way faults occur in proportion to t-way conditions in

code
• t-way faults are removed in proportion to t-way

combinations in inputs

• Do these assumptions reproduce the empirical data?

Branch condition data for t-way
conditions in code
- 7,685 predicates from four avionics
applications
- 400,811 predicates from 6.03 million lines
of code in 63 Java open source applications
- does not consider effects of nesting

If t-way faults are removed in
proportion to t-way combinations in
inputs:

What will that look like over time as
faults are removed? t: 1 2 3 4 5 6 7 8

Avionics 74.1 19.6 4.5 1.2 .3 .1 .1 .1
Java 88.5 9.5 1.4 .4 .1 .1 0 0

Quantify the model parameters
Each set of inputs includes 𝐶 𝑛, 𝑡 combinations at each level

of t, for n variables

• total number of combination settings is 𝑣!×𝐶 𝑛, 𝑡 , so each
test or input set can cover at most 1/𝑣! of the total number of
settings

• (t+1)-way combinations covered at rate of	𝑣"(!$%)/𝑣"! =	1/𝑣
of the proportion of t-way combinations

• if 1-way faults are removed at some rate r for some number
of test sets, then the proportion remaining after k sets will be
(1–r)k

Now what happens with 2-way, 3-way, etc. faults?
Discovery of a t-way fault depends on the presence of t-way

combinations in input
• (t+1)-way combinations 1/v of t-way combinations
• so 1-way fault discovery rate r will be reduced by this

proportion, or r/v for 2-way, r/v2 for 3-way, etc.
• minimum value of v is 2, and Boolean values are common
• so proportion of remaining t-way faults after k test sets

 = (1 – r/2t-1)k

How does this distribution evolve as usage or number of test sets,
k, increases?

Fault distribution as testing progresses
for testing cycles of r=.05; k = 20..100; starting from branch conditions;

curve moves down and to the right; close to empirical data
Mode
l

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

C
um

ul
at

iv
e

pe
rc

en
t

20 40 60 80 100 Branch conditions

Empirical data

Actual vs. model - average
t = 1 2 3 4 5 6

actual 39.7 77.3 92.8 99.4 100 100
predicted 39.9 76.6 92.2 97.8 99.4 100

• Comparing model with average
of reported t-way faults

• Determined k such that actual at
t = 1 matches model at t = 1

• Values for t = 2 ..6 predicted by
model

• Close match suggests
assumptions are appropriate

• note this is approximately a
Pareto distribution with	𝛼 = 1.5

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

average faults, cumulative proportion at t =
1..6

actual predicted

compute
d to
match
actual

predicted
by model

Actual vs. model – individual system

• Evolution of Apache server t-way
faults for period 1 (2001-2002)
through period 2 (2002-2006)

1-way 2-way 3-way 4-way 5-way 6-way

Rpt - 2002 41 29 19 7 0 4

Rpt - 2006 9 38 28 22 3 0

k=54 test sets 9.1 26.2 34.1 17.8 0 13

• Determined k tests such that actual
for period 2 at t = 1 matches model
at t = 1

• Values for t = 2 ..6 predicted by
model

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Apache server faults, cumulative proportion at t
= 1..6

actual 2001-2002 actual 2002-2006 model 2002-2006

Model

Model evolution of
number of faults at t=1..6

0

100

200

300

400

500

600

700

800

Init 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
um

be
r o

f f
au

lts

Number of test cycles

Evolution of t-way faults from initial population of 1,000

1-way 2-way 3-way 4-way 5-way 6-way

2-way faults

• initial population of 1,000
faults

• initial distribution matches
branch condition distribution

• simple faults decline much
faster than more complex
faults, as seen in practice

1-way faults

t-way faults = Ft(1 – r/vt-1)k

for
v = 2
r = .05
k = 0..20

t Ft %
1 74.1
2 19.6
3 4.5
4 1.2
5 0.3
6 0.1

Relationship with Reliability Growth Models

Goel-Okumoto, where
μ(n) = expected number of defects detected at time n:

 μ(n) = a(1 - e-bn)
for

a = initial number of defects
n = execution time
b = rate at which failure rate decreases

assumes: cumulative number of failures follows a Poisson process

How is this related to our model?

t-way fault evolution model: proportion of remaining t-way faults after k
test sets
≈ (1 – r/2t-1)k

• so if μ(n) is expected number of defects detected at time n
• then μ(n) = a(1 - (1 – r/2t-1)k) in our model

• so for single-factor faults this reduces to
 μ(n) = a(1 - (1 – r)k)
 ≈ a(1 - e-kr) which is equivalent to Goel-Okumoto

• with rt = r/2t-1 we have basic exponential model for each level of t
• so it reproduces standard reliability model without initial assumption of

Poisson process

Making this
Knowledge Useful

How does this knowledge help?
Interaction rule: When all faults are triggered by the
interaction of t or fewer variables, then testing all t-way
combinations is pseudo-exhaustive and can provide
strong assurance.

It is nearly always impossible to exhaustively test
all possible input combinations

The interaction rule says we don’t have to
(within reason; we still have value
propagation issues, equivalence
partitioning, timing issues,
more complex interactions, . . .)

Still no silver
bullet. Rats!

Testing Interactions: Design of Experiments
Key features of DoE

– Blocking
– Replication
– Randomization
– Orthogonal arrays to test interactions between factors

Test P1 P2 P3
1 1 1 3
2 1 2 2
3 1 3 1
4 2 1 2
5 2 2 1
6 2 3 3
7 3 1 1
8 3 2 3
9 3 3 2

Each combination
occurs same number
of times, usually once.

Example: P1, P2 = 1,2

Orthogonal Arrays for
Software Testing

Functional (black-box) testing

Hardware-software systems
Identify single and 2-way combination faults

Early papers
Taguchi followers (mid1980’s)
Mandl (1985) Compiler testing
Tatsumi et al (1987) Fujitsu
Sacks et al (1989) Computer experiments
Brownlie et al (1992) AT&T

Generation of test suites using OAs

OATS (Phadke, AT&T-BL)

Results
good,
but not
great.

What’s different about software?

Traditional DoE
• Continuous variable results

• Small number of parameters

• Interactions typically increase
 or decrease output variable

DoE for Software
• Binary result (pass or fail)

• Large number of parameters

• Interactions affect path
 through program

How do these differences affect
interaction testing for software?

Not orthogonal arrays, but Covering arrays: Fixed-value
CA(N, vk, t) has four parameters N, k, v, t : It is a matrix
covers every t-way combination at least once

 Key differences
orthogonal arrays: covering arrays:

6/15/23 NIST 33

• Combinations occur
same number of times

• Not always possible to
find for a particular
configuration

• Combinations occur
at least once

• Always possible to find for a
particular configuration

• Size always ≤ orthogonal
array

A covering array of 13 tests

Each row is a test:
Each column is
a parameter:

• Developed 1990s
• Extends Design of Experiments concept
• NP hard problem but good algorithms now

All triples in only 13 tests, covering 23 = 960 combinations 10
3

• Number of tests: proportional to vt log n for v values, n
variables, t-way interactions

• Good news: tests increase logarithmically with the number of
parameters
=> even very large test problems are OK (e.g., 200 parameters)

• Bad news: increase exponentially with interaction strength t
=> select small number of representative values (but we always
have to do this for any kind of testing)

How many tests are needed?

However:
• coverage increases

rapidly
• for 30 boolean variables
• 33 tests to cover all

3-way combinations
• but only 18 tests to

cover about 95% of
3-way combinations

Testing inputs – combinations of
property values

Suppose we want to test a find-replace function with only two
inputs: search_string and replacement_string

How does combinatorial testing make sense in this case?

Problem example from Natl Vulnerability Database:
2-way interaction fault: single character search string in
conjunction with a single character replacement string, which
causes an "off by one overflow"

Approach: test properties of the inputs

Some properties for this test
String length: {0, 1, 1..file_length, >file_length}

Quotes: {yes, no, improperly formatted quotes}

Blanks: {0, 1, >1}

Embedded quotes: {0, 1, 1 escaped, 1 not escaped}

Filename: {valid, invalid}

Strings in command line: {0, 1, >1}

String presence in file: {0, 1, >1}

This is 213442= 2,592 possible combinations of parameter
values. How many tests do we need for pairwise (2-way)?

We need only 19 tests for pairwise, 67 for 3-way, 218 for 4-way

Testing configurations – combinations of
settings
• Example: application to run on any configuration of OS, browser,

protocol, CPU, and DBMS

• Very effective for interoperability testing

Testing Smartphone Configurations

int HARDKEYBOARDHIDDEN_NO;
int HARDKEYBOARDHIDDEN_UNDEFINED;
int HARDKEYBOARDHIDDEN_YES;
int KEYBOARDHIDDEN_NO;
int KEYBOARDHIDDEN_UNDEFINED;
int KEYBOARDHIDDEN_YES;
int KEYBOARD_12KEY;
int KEYBOARD_NOKEYS;
int KEYBOARD_QWERTY;
int KEYBOARD_UNDEFINED;
int NAVIGATIONHIDDEN_NO;
int NAVIGATIONHIDDEN_UNDEFINED;
int NAVIGATIONHIDDEN_YES;
int NAVIGATION_DPAD;
int NAVIGATION_NONAV;
int NAVIGATION_TRACKBALL;
int NAVIGATION_UNDEFINED;
int NAVIGATION_WHEEL;

int ORIENTATION_LANDSCAPE;
int ORIENTATION_PORTRAIT;
int ORIENTATION_SQUARE;
int ORIENTATION_UNDEFINED;
int SCREENLAYOUT_LONG_MASK;
int SCREENLAYOUT_LONG_NO;
int SCREENLAYOUT_LONG_UNDEFINED;
int SCREENLAYOUT_LONG_YES;
int SCREENLAYOUT_SIZE_LARGE;
int SCREENLAYOUT_SIZE_MASK;
int SCREENLAYOUT_SIZE_NORMAL;
int SCREENLAYOUT_SIZE_SMALL;
int SCREENLAYOUT_SIZE_UNDEFINED;
int TOUCHSCREEN_FINGER;
int TOUCHSCREEN_NOTOUCH;
int TOUCHSCREEN_STYLUS;
int TOUCHSCREEN_UNDEFINED;

Some Android configuration options:

Configuration option values
Parameter Name Values # Values

HARDKEYBOARDHIDDEN NO, UNDEFINED, YES 3

KEYBOARDHIDDEN NO, UNDEFINED, YES 3

KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4

NAVIGATIONHIDDEN NO, UNDEFINED, YES 3

NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED,
WHEEL

5

ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4

SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4

SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5

TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

Total possible configurations:

 3 x 3 x 4 x 3 x 5 x 4 x 4 x 5 x 4 = 172,800

Number of configurations generated for t-way
interaction testing, t = 2..6

t # Configs % of Exhaustive

2 29 0.02

3 137 0.08

4 625 0.4

5 2532 1.5

6 9168 5.3

Solving the oracle problem

• Problem: How do we determine the
expected results for a set of inputs?

• Three approaches using
combinatorial testing

How do we automate checking
correctness of output?

• Creating test data is the easy part!

• How do we check that the code worked correctly
on the test input?

• Crash testing server or other code to ensure it does not crash for any
test input (like ‘fuzz testing’)

- Easy but limited value

• Built-in self test with embedded assertions – incorporate assertions in
code to check critical states at different points in the code, or print out
important values during execution

• Full scale model-checking using mathematical model of system and
model checker to generate expected results for each input - expensive
but tractable

Crash Testing
• Like “fuzz testing” - send packets or other input
to application, watch for crashes

• Unlike fuzz testing, input is non-random;
cover all t-way combinations

• May be more efficient - random input generation
requires several times as many tests to cover the
t-way combinations in a covering array
Limited utility, but can detect
high-risk problems such as:

- buffer overflows
- server crashes

1 - Embedded Assertions
Assertions check properties of expected result:

ensures balance == \old(balance) - amount
&& \result == balance;

•Reasonable assurance that code works correctly across
the range of expected inputs

•May identify problems with handling unanticipated inputs

•Example: Smart card testing
• Used Java Modeling Language (JML) assertions
• Detected 80% to 90% of flaws

2 - model checking to produce tests

The system can never
get in this state!

Yes it can, and
here’s how …

l Model-checker test
production:
if assertion is not true,
then a counterexample
is generated.

l This can be
converted to a test
case.

Black & Ammann, 1999

Testing inputs
| Traffic Collision Avoidance

System (TCAS) module
• Used in previous testing research
• 41 versions seeded with errors
• 12 variables: 7 boolean, two 3-value, one 4-

value, two 10-value
• All flaws found with 5-way coverage
• Thousands of tests - generated by model

checker in a few minutes

Model checking example
-- specification for a portion of tcas - altitude separation.
-- The corresponding C code is originally from Siemens Corp. Research
-- Vadim Okun 02/2002
MODULE main
VAR

Cur_Vertical_Sep : { 299, 300, 601 };
High_Confidence : boolean;

...
init(alt_sep) := START_;

next(alt_sep) := case
enabled & (intent_not_known | !tcas_equipped) : case

need_upward_RA & need_downward_RA : UNRESOLVED;
need_upward_RA : UPWARD_RA;
need_downward_RA : DOWNWARD_RA;
1 : UNRESOLVED;

esac;
1 : UNRESOLVED;

esac;
...
SPEC AG ((enabled & (intent_not_known | !tcas_equipped) &
!need_downward_RA & need_upward_RA) -> AX (alt_sep = UPWARD_RA))
-- “FOR ALL executions,
-- IF enabled & (intent_not_known
-- THEN in the next state alt_sep = UPWARD_RA”

Computation Tree Logic
The usual logic operators,plus temporal:

A φ - All: φ holds on all paths starting from the
current state.

E φ - Exists: φ holds on some paths starting from
the current state.

G φ - Globally: φ has to hold on the entire
subsequent path.

F φ - Finally: φ eventually has to hold
X φ - Next: φ has to hold at the next state
[others not listed]

execution paths
states on the execution paths

SPEC AG ((enabled & (intent_not_known |
!tcas_equipped) & !need_downward_RA & need_upward_RA)
-> AX (alt_sep = UPWARD_RA))

“FOR ALL executions,
IF enabled & (intent_not_known
THEN in the next state alt_sep = UPWARD_RA”

What is the most effective way to integrate
combinatorial testing with model checking?

• Given AG(P -> AX(R))
“for all paths, in every state,

if P then in the next state, R holds”

• For k-way variable combinations, v1 & v2 & ... &
vk

• vi abbreviates “var1 = val1”

• Now combine this constraint with assertion to produce
counterexamples. Some possibilities:

1. AG(v1 & v2 & ... & vk & P -> AX !(R))

2. AG(v1 & v2 & ... & vk -> AX !(1))

3. AG(v1 & v2 & ... & vk -> AX !(R))

What happens with these assertions?
1. AG(v1 & v2 & ... & vk & P -> AX !(R))

P may have a negation of one of the vi, so we get
0 -> AX !(R))

always true, so no counterexample, no test.
This is too restrictive!

2. AG(v1 & v2 & ... & vk -> AX !(1))
The model checker makes non-deterministic choices for
variables not in v1..vk, so all R values may not be covered
by a counterexample.
This is too loose!

3. AG(v1 & v2 & ... & vk -> AX !(R))
Forces production of a counterexample for each R.
This is just right!

Tests generated
t

2-way:
3-way:
4-way:
5-way:
6-way:

0

2000

4000

6000

8000

10000

12000

2-way 3-way 4-way 5-way 6-way

T
e
s
ts

Test cases
156
461

1,450
4,309

11,094

Results

Detection Rate for TCAS Seeded
Errors

0%

20%

40%

60%

80%

100%

2 way 3 way 4 way 5 way 6 way

Fault Interaction level

Detection
rate

• Roughly consistent with data on large systems

• But errors harder to detect than real-world examples

Tests per error

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

2 w ay 3 w ay 4 w ay 5 w ay 6 w ay

Fault Interaction level
T

es
ts Tests per error

Bottom line for model checking based combinatorial testing:
Expensive but can be highly effective

Tradeoffs
l Advantages

- Tests rare conditions
- Produces high code coverage
- Finds faults faster
- May be lower overall testing cost

l Disadvantages
- Expensive at higher strength interactions (>4-way)
- May require high skill level in some cases (if formal

models are being used)

Background k-DNF form

k-DNF = disjunctive normal form expression where no
term contains more than k variables

For example, abc + de contains two terms, one with
three literals and one with two, so the expression is in
3-DNF form.

 A 3-way covering array contains every possible setting
of any 3 variables, as shown in previous slide

3 - Rule based systems testing

Example

if (a && (c && !d ||e)) R1;
 else if (!a && b && !c) R2;
 else exit();

(a(cd̅ +e) → R1) ç if (a && (c && !d ||e)) R1;
(a̅ b c̅ → R2) ç else if (!a && b && !c) R2;
((∼(a(cd̅ +e)))(∼(a̅ b c̅)) → exit) ç else exit();

Rules map to
logic expressions

Example: where covering arrays come in

variables: employee , age, first_aid_training, EMT_cert, med_degree
rule: “If subject is an employee AND 18 or older AND has first aid training

OR an EMT certification OR a medical degree, then authorize”
policy:

emp && age > 18 && (fa || emt || med) → authorize (result1)
else → deny (result2)

(emp && age > 18 && fa) ||
 (emp && age > 18 && emt) ||
 (emp && age > 18 && med)

3-DNF so a 3-way covering
array will include these

Rule Based System Testing
conventional:

 “use cases” verifying important or common situations
 often ad hoc
 may not be sufficiently thorough for high assurance

model-based:
rules à formal model à model checker or other à test

cases
usually based on fault model; mutation testing

Exhaustively test the inputs on which an output is
dependent

convert rule antecedents to k-DNF form, producing
sets of k or fewer attributes that will produce a
particular result

generate separate k-way covering arrays for
combinations that should produce each result

Pseudo-exhaus=ve tes=ng of rules

Positive testing (the easy part)

test set PTEST: every test should produce resulti

for any input where some combination of k input values
matches a resulti condition, a decision of resulti is returned.

Construct test set PTEST with one test for each term of R :

PTESTi = 𝑇!#
"#!

~𝑇"

one test for each term in access control rule antecedents,
with constraint removing any combination that would mask
a fault

example: testing that ab results in resulti, for ab + cd →resulti,
enforce constraint ~(cd)

Negative testing (the hard part)

test set NTEST = covering array of strength k, for the
set of attributes included in rules Ri for a
particular resulti

constraints specified by ~ Ri

ensures testing of all conditions that do not produce
resulti

Fault detection properties

Tests from GTEST and DTEST will detect added, deleted, or altered faults
with up to k attributes

If more than k attributes are included in faulty term F, some faults are
still detected, for number of attributes j > k

j > k and correct term C is not a subset of F: detected by GTEST

j > k and C is a subset of F: not detected by DTEST; possibly detected by
GTEST; higher strength covering arrays for DTEST can detect

Real world example

HIPAA text: “(g)(1) Standard: Personal
representatives. As specified in this paragraph, a
covered entity must, except as provided in
paragraphs (g)(3) and (g)(5) of this section, treat
a personal representative as the individual for
purposes of this subchapter.
(2) Implementation specification: adults and
emancipated minors. If under applicable law a
person has authority to act on behalf of an
individual who is an adult or an emancipated
minor in making decisions related to health care,
a covered entity must treat such person as a
personal representative under this subchapter,
with respect to protected health information
relevant to such personal representation.
(3)(i) Implementation specification:
unemancipated minors. If under applicable law a”
. . . etc. . . . for 349 pages . . .

mapped 324 words to rules and attributes (about
0.2% of total)

Text Attributes

(A) The {minor consents : mc} to such health care
service; no {other consent : oc} to such health care
service is required by law, regardless of whether the
consent of another person has also been obtained; and
the minor has not {requested that such person : mr}
be treated as the personal representative;

expression:
mc && ~oc && ~mr

attribute sets:
{mc, ~oc, ~mr}

(B) The {minor may lawfully obtain : lo} such health
care service without the consent of a parent, guardian,
or other person acting in loco parentis, and the {minor
: mc}, a {court : cc}, or {another person : oc}
authorized by law consents to such health care service;

expression:
lo && (mc||cc||oc)
= lo && mc || lo && cc ||
lo && oc

attribute sets:
{lo, mc}, {lo, cc},
{lo, oc}

(C) A {parent, guardian, or other person acting in loco
parentis assents to an agreement of confidentiality :
pc}

expression: pc

attribute sets:
{pc}

Generating test sets

Rules: mc && ~oc && ~mr ||
lo && (mc || cc || oc) || pc →
grant

To 3-DNF:

mc && ~oc && ~mr ||
lo&&mc || lo&&cc || lo&&oc ||
pc → grant

! mc!oc! mr! lo! cc! pc!
1! 1! 0! 0! 0! 0! 0!
2! 1! 0! 1! 1! 0! 0!
3! 0! 1! 0! 1! 0! 0!
4! 0! 0! 0! 1! 1! 0!
5! 0! 0! 0! 0! 0! 1!

! mc! oc!mr! lo! cc! pc!
1! 0! 0! 0! 0! 0! 0!
2! 0! 0! 1! 1! 0! 0!
3! 0! 1! 0! 0! 1! 0!
4! 0! 1! 1! 0! 0! 0!
5! 1! 0! 1! 0! 1! 0!
6! 1! 1! 0! 0! 0! 0!
7! 1! 1! 1! 0! 1! 0!
8! 0! 0! 0! 1! 0! 0!
9! 0! 0! 0! 0! 1! 0!
10! 1! 0! 1! 0! 0! 0!
11! 1! 1! 0! 0! 1! 0!
12! 0! 1! 1! 0! 1! 0!

GTEST! DTEST!

Ptest Ntest

Real world
Applications

Application - Web browser –
validating interaction rule

• DOM is a World Wide Web
Consortium standard for
representing and interacting
with browser objects

• NIST developed conformance
tests for DOM

• Tests covered all possible
combinations of discretized
values, >36,000 tests

• Question: can we use the
Interaction Rule to increase
test effectiveness the way we
claim?

Document Object Model Events
Original test set:

Event Name Param.

Tests
Abort 3 12
Blur 5 24
Click 15 4352
Change 3 12
dblClick 15 4352
DOMActivate 5 24
DOMAttrModified 8 16
DOMCharacterDataMo
dified

8 64

DOMElementNameCha
nged

6 8

DOMFocusIn 5 24
DOMFocusOut 5 24
DOMNodeInserted 8 128
DOMNodeInsertedIntoD
ocument

8 128

DOMNodeRemoved 8 128
DOMNodeRemovedFrom
Document

8 128

DOMSubTreeModified 8 64
Error 3 12
Focus 5 24
KeyDown 1 17
KeyUp 1 17

Load 3 24
MouseDown 15 4352
MouseMove 15 4352
MouseOut 15 4352
MouseOver 15 4352
MouseUp 15 4352
MouseWheel 14 1024
Reset 3 12
Resize 5 48
Scroll 5 48
Select 3 12
Submit 3 12
TextInput 5 8
Unload 3 24
Wheel 15 4096
Total Tests 36626

Exhaustive testing of
equivalence class values

Document Object Model Test Results
Combinatorial test set:

t Tests % of
Orig.

Test Results

Pass Fail

2 702 1.92% 202 27
3 1342 3.67% 786 27
4 1818 4.96% 437 72
5 2742 7.49% 908 72

6 4227 11.54
% 1803 72

All failures found using < 5% of
original exhaustive test set

Integrating Combinatorial Testing
into Test Operations

• Test suite development
• Generate covering arrays for tests

OR
• Measure coverage of existing tests

and supplement

• Training
• Testing textbooks – Ammann &

Offutt, Mathur
• Combinatorial testing tutorial
• User manuals
• Worked examples
• Book – Introduction to

Combinatorial Testing textbook

Combinatorial Testing Tradeoffs
l Advantages

- Tests rare conditions
- Produces high code coverage
- Finds faults faster
- May be lower overall testing cost

l Disadvantages
- Expensive at higher strength interactions (>4-way)
- May require high skill level in some cases (if formal

models are being used)

Example: Network Simulation
• “Simured” network simulator

• Kernel of ~ 5,000 lines of C++ (not including GUI)

• Objective: detect configurations that can
produce deadlock:

• Prevent connectivity loss when changing network
• Attacks that could lock up network

• Compare effectiveness of random vs.
combinatorial inputs

• Deadlock combinations discovered
• Crashes in >6% of tests w/ valid values (Win32

version only)

Application - Modeling & Simulation

Simulation Input Parameters
Parameter Values

1 DIMENSIONS 1,2,4,6,8
2 NODOSDIM 2,4,6
3 NUMVIRT 1,2,3,8
4 NUMVIRTINJ 1,2,3,8
5 NUMVIRTEJE 1,2,3,8
6 LONBUFFER 1,2,4,6
7 NUMDIR 1,2
8 FORWARDING 0,1
9 PHYSICAL true, false
10 ROUTING 0,1,2,3
11 DELFIFO 1,2,4,6
12 DELCROSS 1,2,4,6
13 DELCHANNEL 1,2,4,6
14 DELSWITCH 1,2,4,6

5x3x4x4x4x4x2x2
x2x4x4x4x4x4
= 31,457,280
configurations

Are any of them
dangerous?

If so, how many?

Which ones?

Network Deadlock Detection
Deadlocks
Detected:

combinatorial

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0 0 0 0 0
3 161 2 3 2 3 3
4 752 14 14 14 14 14

Average Deadlocks Detected:
random

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0.63 0.25 0.75 0. 50 0. 75
3 161 3 3 3 3 3
4 752 10.13 11.75 10.38 13 13.25

Network Deadlock Detection
Detected 14 configurations that can cause deadlock:

14/ 31,457,280 = 4.4 x 10-7

Combinatorial testing found more deadlocks than
random, including some that might never have been
found with random testing

Why do this testing? Risks:
• accidental deadlock configuration: low
• deadlock config discovered by attacker: much higher

(because they are looking for it)

Application - Combinatorial Security Testing

Large scale automated software testing for security
• Complex web applications

• Linux kernels
• Protocol testing & crypto alg. validation
• Hardware Trojan horse (HTH) detection

Web security: Models for vulnerabilities

Sample of XSS and SQLi vulnerabilities found

Sample of XSS and SQLi vulnerabilities found

Application - SCAs for browser fingerprinting
• Identification of user browser can be used offensively/defensively
• Custom TLS handshakes are created using SCAs

• Classification based only on behavior analysis

SCAs for browser fingerprinting: evaluation

New Areas and
Next Steps

Software safety assurance is already very expensive

Consumer level software cost:
about 50% code development,
50% verification

For aviation life-critical,
12% code development,
88% verification
(Software is about 30% of
cost for new civilian aircraft,
higher for military)

Autonomy makes the
problem even harder!

83

Application - Autonomous Systems

Why can’t we use same
processes as other safety-critical
software ?

• Life-critical aviation software
requires MCDC testing, white-box
criterion that cannot be used for
neural nets and other black-box
methods

• Nearly all conventional software
testing is based on structural
coverage – ensuring that
statements, decisions, paths are
covered in testing

84

Code coverage works well - for conventional software

85

Can we use code coverage for machine learning?

• Much of AI/ML depends
on various neural nets

• Algorithm and code
stays the same

• Connections and
weights vary

• Behavior changes
depending on inputs
used in training

86

To monitor and guard input space,
need to measure

• We can measure “neuron coverage”, but indirect measure and
not clear how closely related to accuracy and ability to
correctly process all of the input space

• Measure the input space
directly

• Then see if the AI system
handles all of it correctly

• Gold standard of assurance and verification of life-critical
software can’t be used for much of new life-critical autonomy
software

Nobody at the
wheel …

87

But can they do it under
all kinds of conditions ?

The problem is
harder outside of a
constrained
environment

It doesn’t take much
intelligence to drive a
car.

Even rats can do it!

88

Things get tricky as the scene becomes complex

•Multiple conditions involved in accidents
• "The camera failed to recognize the white truck

against a bright sky”

• "The sensors failed to pick up street signs, lane
markings, and even pedestrians due to the angle of
the car shifting in rain and the direction of the sun”

• We need to understand what combinations of
conditions are included in testing

89

Combinatorial value coverage

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

Vars Combination values Coverage

a b 00, 01, 10 .75

a c 00, 01, 10 .75

a d 00, 01, 11 .75

b c 00, 11 .50

b d 00, 01, 10, 11 1.0

c d 00, 01, 10, 11 1.0

a b c d

0 0 0 0

0 1 1 0

1 0 0 1

0 1 1 1

19 combinations
included in test set

Kuhn, D. R., Mendoza, I. D., Kacker, R. N., & Lei, Y.
(2013). Combinatorial coverage measurement concepts
and applications. 2013 IEEE Sixth Intl Conference on
Software Testing, Verification and Validation Workshops

90

Rearranging
the table:

1.00 00 00
.75 01 01 00 00 00
.50 10 10 01 01 01 00
.25 11 11 10 10 11 11

bd cd ab ac ad bc

Vars Combination values Coverage

a b 00, 01, 10 .75

a c 00, 01, 10 .75

a d 00, 01, 11 .75

b c 00, 11 .50

b d 00, 01, 10, 11 1.0

c d 00, 01, 10, 11 1.0

Total possible 2-way
combinations = 2! 4

2 = 24

S2 = fraction of 2-way
combinations covered =
19/24
= 0.79

91

Graphing Coverage Measurement

100% coverage of .33 of combinations
75% coverage of .50 of combinations
50% coverage of .16 of combinations

Bottom line:
All combinations covered to at
least .50

1.00 00 00
.75 01 01 00 00 00
.50 10 10 01 01 01 00
.25 11 11 10 10 11 11

bd cd ab ac ad bc

S2 = area under
curve
= 0.79

M2

92

What else does this chart show?

St = Tested combinations => code works for these

1 - St = Untested combinations
(look for problems here)

93

Spacecraft software example
82 variables, 7,489 tests, conventional test design
(not covering arrays)

Application - Transfer learning
what is the problem?

• Differences inevitably exist between training data sets,
test data sets, and real-world application data

• Further differences exist between data from two or
more different environments

• How do we predict performance of a model trained on
one data set when applied to another?

• New environment
• Changed environment
• Additional possible values
• etc.

Lanus, E., Freeman, L. J., Kuhn, D. R., & Kacker, R. N. (2021, April).
Combinatorial Testing Metrics for Machine Learning. In 2021 IEEE Intl
Conference on Software Testing, Verification and Validation Workshops
(ICSTW)

95

Transfer learning – conventional practice

• Randomized selection – but will randomization be
sufficient, especially with smaller data sets?

• Ensure at least one of each object type – but this may
not be representative of object attribute distributions

• Interactions are critical to consider in most ML
problems, especially for safety, but conventional
practice does little to ensure data sets are adequately
representative of interactions

96

Example – image analysis
• Planes in satellite imagery – Kaggle ML data set –

determine if image contains or does not contain an
airplane

• Two data sets – Southern California (SoCal, 21,151
images) or Northern California (NorCal, 10,849 images)

• 12 features, each discretized into 3 equal range bins

97

Transfer learning problem

• Train model on one set, apply to the other set
• Problem –

• Model trained on larger, SoCal data applied to
smaller, NorCal data à performance drop

• Model trained on smaller, NorCal data applied to
larger, SoCal data à NO performance drop

• This seems backwards!
• Isn’t it better to have more data?
• Can we explain this and predict it next time?

98

Density of combinations in one but not the
other data set, 2-way

Image from Combinatorial Testing Metrics for Machine Learning, Lanus, Freeman, Kuhn, Kacker, IWCT 2021

For C = SoCal, N = NorCal,
|C\N| / |C| = 0.02
|N\C| / |N| = 0.12

The NorCal data set has fewer “never seen”
combinations, even with half as many
observations

99

Summary
• Software failures are triggered by a small number of

factors interacting – 1 to 6 in known cases

• Therefore covering all t-way combinations, for small t, is
pseudo-exhaustive and provides strong assurance

• Strong t-way interaction coverage can be provided using
covering arrays

• Combinatorial testing is practical today using existing
tools for real-world software

• Combinatorial methods have been shown to provide
significant cost savings with improved test coverage,
and proportional cost savings increases with the size
and complexity of problem

Rick Kuhn, Raghu Kacker, M.S. Raunak
{kuhn, raghu.kacker, raunak}@nist.gov

http://csrc.nist.gov/acts

Please contact us
if you’re interested!

