NIST

National Institute of
Standards and Technology

Combinatorial Testing and its
Applications

Rick Kuhn

National Institute of
Standards and Technology
Gaithersburg, MD

CS/SE 6367
Univ of Texas Dallas. June 15, 2023

What is NIST and why are we doing this?

 US Government agency, whose mission is to support US industry
through developing better measurement and test methods

e 3,000 scientists, engineers, and staff including 4 Nobel laureates

e Project goal — improve cost-benefit ratio for testing

A UNIVERSITY OF @
NIST s

MASON

UNIVERSITY

NC STATE D
UNIVERSITY

l |MBC A P The Johns Hopkins University LOCKHEED .‘W
Applled Physics Loborgfory We never forget who we're working for™

Background

Why combinatorial testing? - examples

* Cooperative R&D Agreement w/ Lockheed Martin
« 2.5 year study, 8 Lockheed Martin pilot
projects in aerospace software
* Results: save 20% of test costs;
increase test coverage by 20% to 50%

« Rockwell Collins applied NIST method and
tools on testing to FAA life-critical

standards
* Found practical for industrial use

* Enormous cost reduction

Average software: testing typically 50% of total dev cost
Civil aviation: testing >85% of total dev cost (NASA rpt)

Applications

Software testing — primary application of these methods
* functionality testing and security vulnerabilities
* approx 2/3 of vulnerabilities from implementation faults

Modeling and simulation — ensure coverage of complex cases

 measure coverage of traditional Monte Carlo sim
* faster coverage of input space than randomized input

Performance tuning — determine most effective combination
of configuration settings among a large set of factors

>> systems with a large number of factors that interact <<

What is the empirical basis?

* NIST studied software failures in 15 years of
FDA medical device recall data

* What causes software failures? |
* logic errors? calculation errors? inadequate|
input checking? interaction faults? Etc.

Interaction faults: e.g., failure occurs if
altitude = 0 && volume < 2.2
(interaction between 2 factors)

So this is a 2-way interaction
=> testing all pairs of values can find this fault

How are interaction faults distributed?

* Interactions e.g., failure occurs if

pressure < 10
pressure < 10 & volume > 300

pressure < 10 & volume > 300 & velocity =5

(1-way interaction)
(2-way interaction)
(3-way interaction)

* Surprisingly, no one had looked at interactions > 2-way before

100

90

80

70

60

50

40

% detected

30

20

10

0

v\
96% of fai

llts caused

65%

of faults ca

aused by si

ngle factor

1

Interaction

py single factor or 2-way interactions

Interesting, but that's
just one kind of
application!

Cumulative percent of faults

100

90

80

70

60

50

40

30

20

10

- e e o FDA

e o Server

2 3

4

5

Number of parameters involved in faults

These faults
more complex
than medical
device
software!!

Why?

NIST

National Institute of
Standards and Techneology

Browser

Cumulative percent of faults

. L T Curves appear
wl ST to be similar
wld A across a variety
0l —f of application

w |/ R domains.
40 /

/
30 f

e o Server

20

10

1 2 3 4 5 6

Number of parameters involved in faults

NIST

National Institute of
Standards and Technology

NASA distributed database

Cumulative percent of faults

100

90

80

70

60

50

40

30

20

10

- oo FDA

e e Browser

e o Server

= = == = NASA DB

=X X 3 32 = =
"'--:::"--__ -—-}::_-.f -
’,I’—"— J/ B .= .
7, 7
i 7
”l[/,
ya) R
¢ /
/
K/
//
/ /
/
/
4
1 2 3 4 5

Number of parameters involved in faults

Note: initial
testing

but

Fault profile
better than
medical
devices!

NIST

National Institute of
Standards and Technology

Cumulative percent of faults

100

90

80

70

60

50

40

30

20

10

/ = e e o FDA

e e Browser

e o Server

= = == =« NASA DB

MySQL

Number of parameters involved in faults

NIST

National Institute of
Standards and Technology

TCPI/IP

Cumulative percent of faults

20

10

Number of parameters involved in faults

- e e o FDA

- e Browser

e o Server

= = == = NASA DB

NW Sec

MySGQL

NIST

National Institute of
Standards and Technology

Various domains collected

Cumulative proportion of faults for t = 1..6

100

90

80

70
7

60

50

30

20

10 ¢

Number of factors involved in failures is small
No failure involving more than 6 variables has been seen

Cumulative percent of faults

Average (unweighted)

Average proportion of faults for t=1..6

20.00 /1

£0.00 /
70.00

60.00

50.00 /

40.00 ¥

310.00

20.00

10.00

0.00
1 2 3 4

(7,
oh

Number of interacting factors

National Institute of
Standards and Technology

What causes this distribution? .z

Proportion of t-way conditions in branch
statements

100
Q0 ﬁi
80
70

Cumulative percent of faults

4

Number of interacting factors

One clue: branches in avionics software.
7,685 expressions from /fand while statements

Comparing with Failure Data ..z

Branch conditions vs. failure conditions Branch
statements

=

1 2 3 4

* Distribution of t-way faults in untested software seems to be similar
to distribution of t-way branches in code
e Testing and use push curve down as easy (1-way, 2-way) faults found

Distribution of failures by number of interacting
variables

Interaction rule: most failures caused by
one factor or two interacting;

progressively fewer by > 3 variables P e Y

interacting = -

* No failures involving more than 6

variables among these

Cumulative percenNof foaults

* Untested (database) or smaller user base

applications (med devices) have simpler

faults than heavily used applications
(browser, server, SQL)

3

nteracting factors

med dev [1] — — ~ browser [2] server [2] database [3]

— — twcp/ip [4] saLs] — - —server [6]

Why does this distribution occur?

Intuitively, simpler faults should be more common than complex
faults; should take longer to find complex faults

Can we develop a quantitative model?

« Start with two assumptions:

« t-way faults occur in proportion to t~way conditions in
code

« t-way faults are removed in proportion to t-way
combinations in inputs

* Do these assumptions reproduce the empirical data?

Branch conditions vs. failure conditions

Branch condition data for t-way

conditions in code —
- 7,685 predicates from four avionics ' A
applications im o e &
- 400,811 predicates from 6.03 millionlines "¢ ~ /.7 /
of code in 63 Java open source applications 3 // /
- does not consider effects of nesting " V// /’
UL/
"/
If t-way faults are removed in ;
proportion to t-way combinations in
inputs: 1 “

What will that look like over time as
faults are removed?

7410196 [45]12] 3.
885 95 | 14| 4 | .1].

1 [.1].1
1[0]0

Quantify the model parameters

Each set of inputs includes C(n, t) combinations at each level
of t, for n variables

e total number of combination settings is v!XC(n, t), so each
test or input set can cover at most 1/v? of the total number of
settings

e (t+1)-way combinations covered at rate of v=t+D /p=t =1 /p
of the proportion of t-way combinations

e if 1-way faults are removed at some rate r for some number

of test sets, then the proportion remaining after k sets will be
(1-r)k

Now what happens with 2-way, 3-way, etc. faults?

Discovery of a t-way fault depends on the presence of t-way
combinations in input

* (t+1)-way combinations 1/v of t-way combinations

* so 1-way fault discovery rate r will be reduced by this
proportion, or r/v for 2-way, r/v? for 3-way, etc.

* minimum value of vis 2, and Boolean values are common

* so proportion of remaining t-way faults after k test sets
= (1 —r/2t1)k

How does this distribution evolve as usage or number of test sets,
k, increases?

Fault distribution as testing progresses

for testing cycles of r=.05; k = 20..100; starting from branch conditions;
curve moves down and to the right; close to empirical da

Cumulative percent of foaults

— = twpfip [4)

meddev[1] - -

3

Interacting factors

- browser [2]

saL(s)

server (2]

— - —server [6]

database [3])

Cumulative percent

100 |
90 |
80 |
70 |
60 1
50 |
40 |
30 !
20 |

10 ¢

20

40

60

80

4

100 essswBranch conditions

5

Actual vs. model - average

* Comparing model with average m
Of reported t-Way faults predicted 309 | 76.6 | 92.2 97.8 994 | 100
* Determined k such that actual at average Jaults, cumulative proportion att =
t =1 matches model at t =1 ‘r7L
* Values for t = 2 ..6 predicted by ~ 7
model // =
* Close match suggests N4
assumptions are appropriate <
* note this is approximately a 20 \\
Pareto distribution with a = 1.5 A |
A S

Actual vs. model — individual system

« Evolution of Apache server t-way
faults for period 1 (2001-2002)
through period 2 (2002-2006)

* Determined k tests such that actual
for period 2 at t = 1 matches model
att=1

« Values for t = 2 ..6 predicted by
model

Rpt - 2002 41 29 19 7 0 4
Rpt - 2006 9 38 28 22 3 0
k=54 test sets 9.1 262 | 341 | 178 0 13

Apache server faults, cumulative proportion at t
=1..6 A

. |—-——
: /‘/////\

60 / -

. / Y / / Model |

40

v /
1 //
1(())[

1 2 3 4 5 6

e gactual 2001-2002 e=m=mactual 2002-2006 e=s===model 2002-2006

IVI Od el eVOI Utio n Of Evolution of t-way faults from initial population of 1,000
numberof faultsatt=1..6 "~ 1 1

700 }

* initial population of 1,000
faults
 initial distribution matches

“1-way faults

L 500 |

ts

branch condition distribution }00 |
 simple faults decline much Z w
faster than more complex » e
faults, as seen in practice - 2-way faults
t-way faults = F,(1—r/vt1)k o [—
0 — — — —
fOF t Ft% Init 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
1 74.1 Number of test cycles
V= 205 ; 122 —] WAy e—eway 3-way 4-way S5Way —e—0-way
r=. :
4 1.2
k = 020 5 0.3
6 0.1

Relationship with Reliability Growth Models

Goel-Okumoto, where
l(n) = expected number of defects detected at time n:

u(n) =a(l - e®")

for
a = initial number of defects

n = execution time
b = rate at which failure rate decreases

assumes: cumulative number of failures follows a Poisson process

How is this related to our model?

t-way fault evolution model: proportion of remaining t-way faults after k

test sets
= (1—r/2t2)k

* so if u(n) is expected number of defects detected at time n
e then wu(n)=a(l-(1-r/241)%) in our model

 so for single-factor faults this reduces to
u(n)=a(l-(1-r))
= a(1 - e*) which is equivalent to Goel-Okumoto

* with r, = r/2"1 we have basic exponential model for each level of t

 so it reproduces standard reliability model without initial assumption of
Poisson process

Making this
Knowledge Useful

How does this knowledge help?

Interaction rule: When all faults are triggered by the
interaction of t or fewer variables, then testing all t-way
combinations is pseudo-exhaustive and can provide
strong assurance.

It is nearly always impossible to exhaustively test
all possible input combinations

The interaction rule says we don’t have to
(within reason; we still have value [

~o al Still no silver
prop.a.gat.lon IS.SU.eS, .equwa ence bullet. Rats!
partitioning, timing issues,

more complex interactions, .. .) ﬂ

Testing Interactions: Design of Experiments

Key features of DoE
— Blocking

— Replication

— Randomization

— Orthogonal arrays to test interactions between factors

Test

© 00 N O g b ODN -

P1

W W W NN DN -2 -

)
N

W N = ON =2 ODNN -

)
w

N WO == W =N =2 N

Each combination
occurs same number
of times, usually once.

Example: P1, P2 =1,2

NIST

National Institute of
Standards and Technology

Orthogonal Arrays for
Software Testing
Functional (black-box) testing
Hardware-software systems
|dentify single and 2-way combination faults

Early papers
Taguchi followers (mid1980’s) Results
Mandl (1985) Compiler testing
.) good,
Tatsumi et al (1987) Fujitsu
but not

Sacks et al (1989) Computer experiments
Brownlie et al (1992) AT&T great.
Generation of test suites using OAs

OATS (Phadke, AT&T-BL)

NIST

Institute of

What’s different about software? wwi=wis

Traditional DoE

e Continuous variable results
e Small number of parameters

e |[nteractions typically increase
or decrease output variable

DoE for Software

e Binary result (pass or fail)
e Large number of parameters

e |[nteractions affect path
through program

How do these differences affect
interaction testing for software?

Not orthogonal arrays, but Covering arrays: Fixed-value
CA(N, vX, t) has four parameters N, k, v, t : It is a matrix
covers every t-way combination at least once

Key differences

orthogonal arrays: covering arrays:
« Combinations occur « Combinations occur
same number of times at least once
 Not always possible to ° AlwayS pOSSible to find for a
find for a'pa-rticular particular configuration
configuration « Size always < orthogonal
array

NIST

National Institute of
Standards and Technology

A covering array of 13 tests

All triples in only 13 tests, covering [13?] 23 =960 combinations

— v Vo Each column is
Eachrowisatestt {5[0]0J0]0]0][0¢0]0] 0] a parameter:
ST 11 1!1 T =
1111]0l1)0|(04T 0T
Clolri ol (of oS B
Sli1]o|o|1|o0fo L]0 v
=7 | e —
00 11011 ‘ Ol 111110 < s O E\>
1 (101|010 (1]0O0|1]|0 Shvaig SE
ololol1|1}1lo¢o|1([1 —— |
Olojl1|1|0|O0|1]|0]0O]1 I I
1 1|1|o|lof1]o]o0O -
1lololo|lo|lolo|l1]1]1
ol1]loflo|oj1|1)]1|0]1

 Developed 1990s
e Extends Design of Experiments concept
* NP hard problem but good algorithms now NIST

National Institute of
Standards and Technology

How many tests are needed?

Number of tests: proportional to vt log n for v values, n
variables, t-way interactions

Good news: tests increase logarithmically with the number of
parameters
=> even very large test problems are OK (e.g., 200 parameters)

Bad news: increase exponentially with interaction strength t
=> select small number of representative values (but we always
have to do this for any kind of testing)

However: 10 5 - ———

* coverage increases N
rapidly i

* for 30 boolean variables

* 33 tests to cover all
3-way combinations

* but only 18 tests to
cover about 95% of
3-way combinations

a]
=
N

Covekage Rati
(=) (==} [} (=)
[YR o

=
—

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Test

=
=]

Testing inputs — combinations of
property values

Suppose we want to test a find-replace function with only two
inputs: search_string and replacement_string

How does combinatorial testing make sense in this case?

Problem example from Natl Vulnerability Database:
2-way interaction fault: single character search string in
conjunction with a single character replacement string, which

causes an "off by one overflow"

Approach: test properties of the inputs

Some properties for this test

String length: {0, 1, 1..file_length, >file _length}
Quotes: {yes, no, improperly formatted quotes}
Blanks: {0, 1, >1}

Embedded quotes: {0, 1, 1 escaped, 1 not escaped}
Filename: {valid, invalid}

Strings in command line: {0, 1, >1}

String presence in file: {0, 1, >1}

This is 213442= 2,592 possible combinations of parameter
values. How many tests do we need for pairwise (2-way)?

We need only 19 tests for pairwise, 67 for 3-way, 218 for 4-way

Testing configurations — combinations of
settings

* Example: application to run on any configuration of OS, browser,
protocol, CPU, and DBMS

* Very effective for interoperability testing

Browser Protocol
IE MySQL
Firefox Sybase
IE Oracle
Firefox MySQL
IE Sybase
Firefox Oracle
IE MySQL

Firefox Sybase

1
2
3
4
o
6
7
8
9

Firefox Oracle

Firefox Oracle Ng

dational Institute of
rds and Technology

-
o

Testing Smartphone Configurations

Some Android configuration options:

int HARDKEYBOARDHIDDEN_NO;
int HARDKEYBOARDHIDDEN_UNDEFINED;
int HARDKEYBOARDHIDDEN_YES;

int KEYBOARDHIDDEN_NO;

int KEYBOARDHIDDEN_UNDEFINED;

int KEYBOARDHIDDEN_YES;

int KEYBOARD_12KEY;

int KEYBOARD_NOKEYS;

int KEYBOARD_QWERTY;

int KEYBOARD UNDEFINED;

int NAVIGATIONHIDDEN_NO;

int NAVIGATIONHIDDEN_UNDEFINED;

int NAVIGATIONHIDDEN_YES;

int NAVIGATION_DPAD;

int NAVIGATION_NONAV;

int NAVIGATION_TRACKBALL;

int NAVIGATION_UNDEFINED;

int NAVIGATION_WHEEL;

int ORIENTATION_LANDSCAPE;
int ORIENTATION_PORTRAIT;

int ORIENTATION_SQUARE;

int ORIENTATION_UNDEFINED;

int SCREENLAYOUT _LONG_MASK;

int SCREENLAYOUT _LONG_NO;

int SCREENLAYOUT LONG_UNDEFINED;
int SCREENLAYOUT LONG_YES;

int SCREENLAYOUT _SIZE_LARGE;

int SCREENLAYOUT _SIZE_MASK;

int SCREENLAYOUT _SIZE_ NORMAL;

int SCREENLAYOUT _SIZE_SMALL;

int SCREENLAYOUT _SIZE_UNDEFINED;
int TOUCHSCREEN_FINGER;

int TOUCHSCREEN_NOTOUCH;

int TOUCHSCREEN_STYLUS;

int TOUCHSCREEN_UNDEFINED;

NIST

National Institute of
Standards and Technelogy

Configuration option values

Parameter Name Values # Values
HARDKEYBOARDHIDDEN | NO, UNDEFINED, YES 3
KEYBOARDHIDDEN NO, UNDEFINED, YES 3
KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4
NAVIGATIONHIDDEN NO, UNDEFINED, YES 3
NAVIGATION DPAD, NONAYV, TRACKBALL, UNDEFINED, 5
WHEEL
ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4
SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4
SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5
TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

Total possible configurations:

3x3x4x3x5x4x4x5x4=172,800 ST

Standards and Technology

Number of configurations generated for t-way
interaction testing, t= 2..6

t # Configs |% of Exhaustive

2 29 0.02
3 137 0.08
4 625 0.4
5 2532 1.5
6 9168 5.3

NIST

National Institute of
Standards and Technology

Solving the oracle problem

 Problem: How do we determine the
expected results for a set of inputs?

 Three approaches using
combinatorial testing

How do we automate checking
correctness of output?

* Creating test data is the easy part!

* How do we check that the code worked correctly
on the test input?

* Crash testing server or other code to ensure it does not crash for any
test input (like ‘fuzz testing’)
- Easy but limited value

* Built-in self test with embedded assertions — incorporate assertions in
code to check critical states at different points in the code, or print out
important values during execution

* Full scale model-checking using mathematical model of system and
model checker to generate expected results for each input - expensive
but tractable

NIST

National Institute of
Standards and Technology

Crash Testing

- Like “fuzz testing” - send packets or other input
to application, watch for crashes

» Unlike fuzz testing, input is non-random;
cover all t-way combinations

- May be more efficient - random input generation
requires several times as many tests to cover the
t-way combinations in a covering array

Limited utility, but can detect
high-risk problems such as:
- buffer overflows

- server crashes
NIST

National Institute of
Standards and Technology

1 - Embedded Assertions

Assertions check properties of expected result:

ensures balance == \old(balance) - amount
&& \result == balance;

*Reasonable assurance that code works correctly across
the range of expected inputs

*May identify problems with handling unanticipated inputs

Example: Smart card testing

» Used Java Modeling Language (JML) assertions
» Detected 80% to 90% of flaws

NIST

National Institute of
Standards and Technology

NIST

National Institute of
Standards and Technology

2 - model checking to produce tests

/ The system can neveﬂ Yes i1 can, ancﬂ\

get in this statel here’s how ..
"

| 4

J

mitert I il ® Model-checker test
S}"ST crt generate model | combine scenarios| gener ate p I’Od u Ctl on:
specs mutants -] checker : scenarios test input if assertion is not true

then a counterexample
Complete - TDA L fesf cases IS generated
Tests

® This can be
Run test converted to a test
Tests " results case.

System
source

Black & Ammann, 1999

Testing inputs N

:\‘8‘-}‘3‘%?‘%»&‘%3;&‘ O .

o Iraffic Collision Avoidance
System (TCAS) module

« Used in previous testing research
« 41 versions seeded with errors

o 12 variables: 7 boolean, two 3-value, one 4-
value, two 10-value

« All flaws found with 5-way coverage

« Thousands of tests - generated by model
checker in a few minutes

NIST

National Institute of
Standards and Technology

. NIST
Model checking example -

-—- specification for a portion of tcas - altitude separation.
-—- The corresponding C code is originally from Siemens Corp. Research

-- Vadim Okun 02/2002

MODULE main

VAR
Cur Vertical Sep : { 299, 300, 601 };
High Confidence : boolean;

init(alt_sep) := START ;
next (alt _sep) := case
enabled & (intent not known | !'tcas_equipped) : case

need upward RA & need downward RA : UNRESOLVED;
need upward RA : UPWARD RA;

need downward RA : DOWNWARD RA;

1 : UNRESOLVED;

esac;
1l : UNRESOLVED;
esac;
SPEC AG ((enabled & (intent not known | !tcas_equipped) &

'need downward RA & need upward RA) -> AX (alt sep = UPWARD RA))

-— “FOR ALL executions,
-- IF enabled & (intent not known .
-- THEN in the next state alt sep = UPWARD RA”

Computation Tree Logic NIST

National Institute of
Standards and Technology

The usual logic operators,plus temporal:

A ¢ - All: ¢ holds on all paths starting from the
current state.

E ¢ - Exists: ¢ holds on some paths starting from
the current state.

G ¢ - Globally: ¢ has to hold on the entire
subsequent path.

F ¢ - Finally: ¢ eventually has to hold

X ¢ - Next: ¢ has to hold at the next state

[others not listed]

execution paths
X///states on the execution paths

SPEC AG ((enabled & (intent not known |
'tcas _equipped) & !'need downward RA & need upward RA)
-> AX (alt sep = UPWARD RA))

“FOR ALL executions,
IF enabled & (intent not known
THEN in the next state alt sep = UPWARD RA”

What is the most effective way to integrate
combinatorial testing with model checking?

Given AG (P -> AX(R))
“for all paths, in every state,
if P then in the next state, R holds”

For k-way variable combinations, vl & v2 & ... &
vk

vi abbreviates “var1 = val1”

Now combine this constraint with assertion to produce
counterexamples. Some possibilities:

1.AG(vl & v2 & ... & vk & P -> AX ! (R))
2.AG(vl & v2 & ... & vk -> AX (1))
3.AG(vl & v2 & ... & vk -> AX !'(R))

NIST

National Institute of
Standards and Technology

What happens with these assertions?

1. AG(vl & v2 & ... & vk & P -> AX ' (R))

P may have a negation of one of the v;, so we get
0 -> AX '(R))
always true, so no counterexample, no test.
This is too restrictive!

2. AG(vl & v2 & ... & vk -> AX '(1))
The model checker makes non-deterministic choices for
variables not in v1..vk, so all R values may not be covered
by a counterexample.
This is too loose!

3.AG(vl & v2 & ... & vk -> AX ! (R))

Forces production of a counterexample for each R.
This is just right!

NIST

National Institute of
Standards and Technology

t

2-way:
3-way:
4-way:
S-way:
6-way:

Tests generated

Test cases
156

461

1,450
4,309
11,094

NIST

National Institute of
Standards and Technology

Tests

12000

10000

8000

6000

4000

2000

—

T T

2-way

3-way

4-way

5-way

6-way

Results

* Roughly consistent with data on large systems

 But errors harder to detect than real-world examples

NIST

National Institute of
Standards and Technology

100%
80%
60%
40%
20%

0%

Detection Rate for TCAS Seeded

Errors

/

¢

d

¥

—e— Detection
rate

Fault Interaction level

2 way 3 way 4 way 5way 6 way

Tests

Tests per error

350.0

300.0
250.0

200.0

/

150.0

/

—ae— Tests per error

100.0

)4

e

50.0
00 #/?/

2way 3way 4way Sway 6way

Fault Interaction level

Bottom line for model checking based combinatorial testing:
Expensive but can be highly effective

NIST
Tradeoffs el

. Advantages

- Tests rare conditions

- Produces high code coverage

- Finds faults faster

- May be lower overall testing cost

. Disadvantages

- Expensive at higher strength interactions (>4-way)

- May require high skill level in some cases (if formal
models are being used)

3 - Rule based systems testing

Background A-DNF form

k-DNF = disjunctive normal form expression where no
term contains more than & variables

For example, abc + de contains two terms, one with

three literals and one with two, so the expression 1s in
3-DNF form.

A 3-way covering array contains every possible setting
of any 3 variables, as shown 1n previous slide

Example

if (a && (c && !d |le)) R1; Rules map to
else if (la && b && !c) R2;

else exit();

$

logic expressions

(a(cd +e) — R;) € if(a && (c && !d ||le)) RI;

(abc— R, € clseif (la&& b && Ic) R2;
((~(a(cd +e)))(~(a b ¢)) — exit) € else exit();

Example: where covering arrays come in

variables: employee , age, first aid training, EMT cert, med degree

rule: “If subﬂf:[ct is an employee AND 18 or older AND has first aid training
OR an EMT certification OR a medical degree, then authorize”

policy:
emp && age > 18 && (fa || emt || med) — authorize (result,)
else — deny (result,)

(emp && age > 18 && fa) ||
(emp && age > 18 && emt) ||
(emp && age > 18 && med)

Rule Based System Testing

conventional:

“use cases’ verifying important or common situations
often ad hoc

may not be sufficiently thorough for high assurance

model-based:

rules = formal model =2 model checker or other = test
cases

usually based on fault model; mutation testing

Pseudo-exhaustive testing of rules

Exhaustively test the inputs on which an output is
dependent

convert rule antecedents to k-DNF form, producing
sets of k or fewer attributes that will produce a
particular result

generate separate k-way covering arrays for
combinations that should produce each result

Comparison

model-based: |rules
AN

0100111 model 0O 1 00 1 1 1 result
. checker
generate input data for each set of inputs
(random, covering determine expected result

array, ad hoc)

our approach:

generate covering arrays
rules with constraint from rules

\

test covering
array — array — ¢ 00
result, result,

Positive testing (the easy part)

test set PTEST: every test should produce result;

for any input where some combination of k input values
matches a result; condition, a decision of result; is returned.

Construct test set PTEST with one test for each term of R :

PTEST; = T; /\ ~T;
J#i

one test for each term in access control rule antecedents,
with constraint removing any combination that would mask
a fault

example: testing that ab results in result, for ab + cd —>result;,
enforce constraint ~(cd)

Negative testing (the hard part)

test set NTEST = covering array of strength k, for the
set of attributes included in rules R, for a
particular result;

constraints specified by ~ R;

ensures testing of all conditions that do not produce
result;

Fault detection properties

Tests from GTEST and DTEeST will detect added, deleted, or altered faults
with up to k attributes

If more than k attributes are included in faulty term F, some faults are
still detected, for number of attributesj > k

j >k and correct term Cis not a subset of F: detected by GTEST

j>kand Cis a subset of F: not detected by DTEST; possibly detected by
GTEST; higher strength covering arrays for DTEST can detect

Real world example

HIPAA text: “(g)(1) Standard: Personal
representatives. As specified in this paragraph, a
covered entity must, except as provided in
paragraphs (g)(3) and (g)(5) of this section, treat
a personal representative as the individual for
purposes of this subchapter.

(2) Implementation specification: adults and
emancipated minors. If under applicable law a
person has authority to act on behalf of an
individual who is an adult or an emancipated
minor in making decisions related to health care,
a covered entity must treat such person as a
personal representative under this subchapter,
with respect to protected health information
relevant to such personal representation.
(3)(i) Implementation specification:
unemancipated minors. If under applicable law a’
.etc. ... for349 pages . ..

J

mapped 324 words to rules and attributes (about
0.2% of total)

Text

(A) The {minor consents : mc} to such health care
service; no {other consent : oc} to such health care
service is required by law, regardless of whether the
consent of another person has also been obtained; and
the minor has not {requested that such person : mr}
be treated as the personal representative;

(B) The {minor may lawfully obtain : lo} such health
care service without the consent of a parent, guardian,
or other person acting in loco parentis, and the {minor
: mc}, a {court : cc}, or {another person : oc}
authorized by law consents to such health care service;

(C) A {parent, guardian, or other person acting in loco
parentis assents to an agreement of confidentiality :

pe}

Attributes

expression:
mc && ~oc && ~mr

attribute sets:
{mc, ~oc, ~mr}

expression:
lo && (mc]|ccljoc)
=lo && mc || lo && cc ||
lo && oc

attribute sets:
{lo, mc}, {lo, cc},
{lo, oc}

expression: pc

attribute sets:
{pc}

Generating test sets

Blololo|lololo|o]olo|o|o|o
Slolol—|ol—lol—]|ol—|lol—]|—
1] [a} [o] (o} o] o} (o} (o} ko] [o]) (o} (o} (e}
—
< (=3 (51 (=} =1 =N (oF (o] [[o} (20 (o} B
Sloloel—l—lol—|—]ololo]|~ |~
Q
clolelelel= =~ |eolo ||
=l 0 G B N (N DN S B = e
glololo]o |~
Slelolo]—|o
olo|-|-]—|o
—
=1 =1 =] [=] =
Blolo|—|o|le
[S)
mllooo
=l S0 Gl 53)

Rules: mc && ~oc && ~mr ||

lo && (mc || cc || oc) || pc —

grant

"

To 3-DNF:

mc && ~oc && ~mr ||

lo&&mc || lo&&cc || lo&&oc ||

pc — grant

Real world
Applications

Application - Web browser —

validating interaction rule

DOCUMENT

LINK ANCHOR

FORM

TEXT
RADIO
CHECKBOX
TEXTAREA

PASSWORD

SELECT
OPTIONS

BUTTON
RESET

SUBMIT

DOM is a World Wide Web
Consortium standard for
representing and interacting
with browser objects

NIST developed conformance
tests for DOM

Tests covered all possible
combinations of discretized
values, >36,000 tests

Question: can we use the
Interaction Rule to increase
test effectiveness the way we
claim?

NIST

National Institute of
Standards and Technology

Document Object Model Events
Original test set:

Event Name Param. Tests
Abort 3 12 Load 3 24
Blur 5 24 MouseDown 15 4352
Click 15 4352 MouseMove 15 4352
MouseOut 15 4352
Change 3 12
. MouseOver 15 4352
dblClick 15 4352
. MouseUp 15 4352
DOMActivate 5 24 M Wheel 14 1024
DOMAttrModified 8 16 Rouste ce 3 Y
DOMCharacterDataMo 8 64 os€
dified Resize 5 48
DOMElementNameCha 6 8 Scroll S 48
n Select 3 12
ged ;
DOMFocusin 5 24 ?“b'lm't 3 12
DOMFocusOut 5 24 Ue>;t ngut g 22
DOMNodelnserted 8 128 Wr;loal T
DOMNodelnsertedintoD 8 128 ce
Sl rE! Total Tests 36626
DOMNodeRemoved 8 128
DOMNodeRemovedFrom 8 128
Document
DOMSubTreeModified 8 64 . .
Error 3 12 Exhaustive testing of
Focus 5 24
KeyDown 1 17 equivalence class values NIST
National Institute of
KeyUp 1 17 Standards and Technology

Document Object Model Test Results
Combinatorial test set:

Test Results

(0]
t Tests /o .Of _
Orig. Pass Fail
2 702 1.92% 202 27
3 1342 3.67% 786 27
1818 4.96% 437 72
5 2742 7.499% 908 72
6 4227 1153 1803 72

All failures found using < 5% of
original exhaustive test set

%

NS - =Cc3CEN

300 =00

100

90

80

70

60

50

40

30

20 4£

10

1 2 3 4 5 6
Interaction strength
Med. Dev Broweer
..... Ser\er Asastssss NASA
E— NW Sec e = =) OM

Integrating Combinatorial Testing
into Test Operations

* Test suite development
* Generate covering arrays for tests

NIST Special Publication 800-142

v NIST
* Measure coverage of existing tests .
and supplement D

INFORMATION SECURITY
* Training

* Testing textbooks — Ammann &
Offutt, Mathur

 Combinatorial testing tutorial —

* User manuals

* Worked examples Ty

* Book — Introduction to
Combinatorial Testing textbook e oSl i Techclon

PRACTICAL COMBINATORIAL TESTING

D. Richard Kuhn. Raghu N. Kacker. Yu Lei

NIST

National Institute of
Standards and Technology

Combinatorial Testing Tradeoffs
. Advantages

- Tests rare conditions

- Produces high code coverage

- Finds faults faster

- May be lower overall testing cost

. Disadvantages

- Expensive at higher strength interactions (>4-way)

- May require high skill level in some cases (if formal
models are being used)

Application - Modeling & Simulation
Example: Network Simulation

. “Simured” network simulator
. Kernel of ~ 5,000 lines of C++ (not including GUI)

- Objective: detect configurations that can
produce deadlock:
. Prevent connectivity loss when changing network
. Attacks that could lock up network

- Compare effectiveness of random vs.
combinatorial inputs

. Deadlock combinations discovered

- Crashes in >6% of tests w/ valid values (Win32
version only) NIST

National Institute of
Standards and Technology

Parameter Values
1 DIMENSIONS 1,2,4,6,8
2 NODOSDIM 2,4,6
3 NUMVIRT 1,2,3,8
4 NUMVIRTINJ 1,2,3,8
5 NUMVIRTEJE 1,2,3,8
6 LONBUFFER 1,2,4,6
V4 NUMDIR 1,2
8 FORWARDING 0,1
9 PHYSICAL true, false
10 ROUTING 0,1,2,3
11 DELFIFO 1,2,4,6
12 DELCROSS 1,2,4,6
13 DELCHANNEL 1,2,4,6
14 DELSWITCH 1,2,4,6

Simulation Input Parameters

5x3x4x4x4x4x2x2
xX2x4x4x4x4x4

= 31,457,280
configurations

Are any of them
dangerous?

If so, how many?

Which ones?

NIST

National Institute of
Standards and Technology

Network Deadlock Detection

Deadlocks
Detected:
combinatorial

1000 2000 4000 38000

t Tests 500 pkts pkts pkts pkts pkts
2 28 0) 0) 0) 0) 0)
3 161 2 3 2 3 3
4

752 14 14 14 14 14

Average Deadlocks Detected:
random

1000 2000 4000 8000
Tests 500 pkts pkts pkts pkts pkts
28 0.63 0.25 0.75 0. 50 0.75
161 3 3 3 3 3
752 10.13 11.75 10.38 13 13.25

B W IN ~+

NIST

National Institute of
Standards and Technology

NIST

National Institute of
Standards and Technology

Network Deadlock Detection

Detected 14 configurations that can cause deadlock:
14/ 31,457,280 = 4.4 x 10/

Combinatorial testing found more deadlocks than
random, including some that might never have been
found with random testing

Why do this testing? Risks:

« accidental deadlock configuration: low

» deadlock config discovered by attacker: much higher
(because they are looking for it)

Application - Combinatorial Security Testing

Large scale automated software testing for security
« Complex web applications

* Linux kernels

* Protocol testing & crypto alg. validation

« Hardware Trojan horse (HTH) detection

Combinatorial methods can make software security testing
much more efficient and effective than conventional approaches

KAT_AES

e y j [g i =2 System Calls
— =3
1=4 Kernel
75
| 1 ,,
| sl '
l

80 }
25 :

N System Calls

Library Functions S B a

Research

Coverage (%)

Web security: Models for vulnerabilities

Cross-Site-Scripting (XSS): Top 3 Web Application Security Risk

* Inject client-side script(s) into web-pages viewed by other users

« Malicious (JavaScript) code gets executed in the victim’s browser

twikh'r{’ l

http://twitter.com/zzap#@ "onmouseo You TUhe
r="alert| h')
Tl M £l e
(TR Ts e arguee = Aot colors Ted sy Weeston Wae

Difference from Classical CT: Modelling Attack Vectors

« Attacker injects client-side script in parameter msg:
http://www.foo.com/error.php?msg=<script>alert(1)</script>

SBA

Research

Sample of XSS and SQL.i vulnerabilities found

WaC
Tidy your HTML

AN eNor (1/0 erxor: 403 Access to url '" autofocus ocnfocus="var hedocument.getElementsByTagName('head') (0] ;var sedocument.createElament ('script');s.src='hetp://wwv.sba-resssrch.org/x.9s';]

frying to get

Address of document to tidy: | |

_indent

L _enforce XML well-formedness of the results (may lead 1o loss of parts of the onaginating document f oo ill-formed

[ty e |

Stuff used to build this service

Me:sage from webpage

* lidy
: xmilint '(ior onf:rcel?g XML woll-formednecs) A Thisiscemete toaviexjs located at SBA Sever

See also the undarlying Python Scripl.

script $Revision. 1.22 $ of $Date. 2013-10-21 12.1333 8

by Dan Connolly
Further developed and mainiained by Dominique Hazael-Massieux

e)

Koha » Administratien s Authority MARC sublfield structure - ieweasel (o %

(7Y ve——— 3. Execute payload 1. Send payload
@) Owre pliopadd.formbartypeceds R oo MY v x| @ (@ Coogte afte ¢ & = (

2. Send response
Browser Oracle XSSInjector SUT

Database

Remete text via x s I0Cated ot & SBA Server.
Wiherabiity Disclosure by Combinatorial Seaurty Testing Group. -
Contact: cst@sbaresearchorg

Configuration
Flle

[L Resuits

Oracle

SBA

Research

Sample of XSS and SQL.i vulnerabilities found

Methodology
1. Executing XSS attack vectors against SUTs

2. ldentifying one or more inducing combinations of input values that
can trigger a successful XSS exploit (example below)

JSO WSi INT WS2 EVH WS3 PAY WS4 PAS WS5 JSE
"><script> Y - - L onError= L alert(1) U 7> U \>
"><script> Ul ’> L) onError= T alert(1) L ’> L \>
"><script> u = U onError= L src="invalid" U > u \>
"><script> U ’> U onError= T src="invalid" U > u \>

Retrieving the Root Cause of Security Vulnerabilities

« Analysis revealed common structure for successful XSS Vectors
« E.g. all contain the following 2-tuple: ("><script>, onError=)
UNIVERSITY OF SBA
% TEXAS
x Research

ARLINGTON

Application - SCAs for browser fingerprinting

 |dentification of user browser can be used offensively/defensively

« Custom TLS handshakes are created using SCAs

 Classification based only on behavior analysis

Testing procedure

Complete set of
test sequences

Selected subset

Execution of test sequences
from selected test set

— ®

-

=

» Execution

for evaluation

framework

. ®

Firefox

Feature vector generaton

Internet
Explorer

Google
Chrome

Microsoft
— @ Edge

Opera

o
-

FV(Firefox)

P
-

FV(Internet Explorer)

o
-

FV(Google Chrome)

\

FV(Microsoft Edge)

A

00000

FV(Opera)

Classification
based on feature vectors

[.”] Group 1

L) K9 con:

[. ’] Group N

NIST

National Institute of
Standards and Technology

SBA

Research

SCAs for browser fingerprinting: evaluation

Complete test sequence set: S with |S| = 1956

Browsers @ Mozilla Firefox, version 64.0.0.6914;
Q Google Chrome, version 71.0.3578.98;
Q Microsoft Internet Explorer, version 11.0.17134.1;
Q@ Microsoft Edge, version 11.00.17134 .471.
@ Opera, version 57.0.3098.106;

Q {Firefox},
@ {Google Chrome, Opera},
© {Microsoft Internet Explorer, Microsoft Edge}

NIST SBA

g e o Research

New Areas and
Next Steps

Application - Autonomous Systems

Software safety assurance is already very expensive

Consumer level software cost: @%
about 50% code development, V&V cost and Certification N

50% verification

For FAA compliant DO-178B Level A software, the
For aviation life-critical, industry usually spends 7 times as much on verification

0 (reviews, analysis, test). So that's about 12% for
12% code development, development and 88% for verification.
88% verification

(Software is about 30% of
cost for new civilian aircraft,
higher for military)

Level B reduces the verification cost by approximately
15%. The mix is then 25% development, 75% verification.

Randall Fulton
FAA Designated Engineenng Representative
(private email to L. Markosian, July 2008)

Autonomy makes the
problem even harder!

13 April 2010 NFM 2010 10

83

Why can’t we use same
processes as other safety-critical
software ?

* Nearly all conventional software
testing is based on structural
coverage — ensuring that
statements, decisions, paths are
covered in testing

e Life-critical aviation software
requires MCDC testing, white-box
criterion that cannot be used for
neural nets and other black-box
methods

1010011101010011110001101001101101101101000100100010101011100010110)
0010110001001110101001111000110100110110110110100010010001010101110
lOlOOllll. 11000110100110110110110100010010111010101110001011 1
' -91001lLl000110l00110l10llOllOl00010010001010101110

$0110100110110110110100010g]00010101011100010110
100010011001010101110001 00100111010400111101

/00110100110110110110 0010110
7100111100011010011 0101111
£1000110100110110 11100010111

~10110100010010001 1010100111100
10100lllO10100111100011010011 101011100010110
0010110001001110101001114 10010001010101110
10100111010100111100011 01011101019 00010111
00101100010011101010011 101 011010001 W10101110
011010011011011011] v 10110001 0100111100
111001110101001 0100110 lOlllOOOlOlll
1010110001 1lllOOO 1 0010001010101110
0010011101 00011010 010101011100010110
0110100110 011010004 1000100111010100111101

10100111010100111100 00110010101011100010110]

00101100010011101 001101 10110100010010001010101111
001001110101 01001101 01010100101110101011100010111
111010011011 v 00100100 101110001011000100111010100111100
101001110 OOOllOlO lO110llO1000100100010101011100010110
001014080 i 010100 0100110110110440100010010001010101110§
10100 OOllllO 011011011011010' 01110101011100010111}
001011 100111010 000110100110110; R010010001010101110f
01101001101101, 01001000101010111' 111010100111100
11100111010100 OOllOlOOllOllOllOlll 011100010117
101011000100111 OlOOllllOOOllOlOOllO 1010101110
0010011101010011110001101001101101101] A% 100010110)
011010011011011011010001001100101010,] 00111101
101001110101001111000110100110110114 1001 F00010110)
0010110001001110101001111000110100, Q) OlOlOllll
001001110101001111000110100110110 (¢1100010111
11101001101101101101000100100010 Ll 10100111100
1010011101010011110001101001101) 0011100010110
001011000100111010100111100011010 X 0001010101110
10100111010100111100011010011011011] 011100010113
0010110001001110101001111000110100110 R01010101110
01101001l 011 0Z1 0001010101110% .] 0100111100
11100 1 1| 1101101101101000 100010111
10107 1 1 0110100110110110110Ngly10010001010101110f

001001110101001111000110100110110110110100010010%010101011100010110§
0110100110110110110100010011001010101110001011000100111010100111101
1010011101010011110001101001101101101101000100110010101011100010110y

?ﬁﬂﬁﬁfﬁﬁ?ﬁ?ﬁEﬁtiﬁMﬁﬁﬁ?Sﬁﬁﬁﬁﬁ

10100lllOlOlOOll1lOO01101001101101101lO100010010001010lOlllOOOlOllO

001011000100111010100111100014 lOOll llOl 011010001001 OlO 1]
10100111010100111100011010011 g%m
00101100010011101010011110001 110 Is 1] 10

OllO1001lOllOllOllOl0001001000lOlOlOlll000101100010011101010011llOO
111001110101001111000110100110110110110100010010001010101110001011]
1010110001001110101001111000110100110110110110101010010001010101110]

84

Code coverage works well - for conventional software

Annatated Source Listing i
P el sy Cned et Laa |] e
01.ll fsdda = A
1
= LN o
gtart N ||| ESE e —
JIG) SN2 w3 Line t ['
6 & 3 A0 p
complazityaiint L, int 1) q ! ‘ f
l.-' Fample modale with complexity 6 o/ e |
if (1 >D&s % >0) | & ! |
while (1 > §) | LY. |
If (L 261 5% 2) Y l.
printf(“sa\n", il; '[‘ /
‘1;“ ‘ » Il
printf~%in". 1l; » |
| l {“ |
L, wl

85

Can we use code coverage for machine learning?

i MUCh Of A|/|V| |_ depends Input layer Hidden layer Output layer
on various neural nets

* Algorithm and code

Input #1
stays the same
e Connections and Input #2 Output
weights vary
Input #3

* Behavior changes
depending on inputs
used in training

86

To monitor and guard input space,
need to measure

* Gold standard of assurance and verification of life-critical
software can’t be used for much of new life-critical autonomy
software

* We can measure “neuron coverage”, but indirect measure and
not clear how closely related to accuracy and ability to
correctly process all of the input space

* Measure the input space
directly

* Then see if the Al system
handles all of it correctly

NewScientist

Scientists have trained rats to drive
tiny cars to collect food
00POOOO

22 October 2019

By Alice Klein

S

}' —

w
@.

==

It doesn’t take much
intelligence to drive a
car.

Even rats can do it!

But can they do it under
all kinds of conditions ?

The problem is
harder outside of a
constrained
environment

88

Things get tricky as the scene becomes complex

* Multiple conditions involved in accidents

*"The camera failed to recognize the white truck
against a bright sky”

*"The sensors failed to pick up street signs, lane
markings, and even pedestrians due to the angle of
the car shifting in rain and the direction of the sun”

e \We need to understand what combinations of
conditions are included in testing

89

Combinatorial value coverage

Donn S
0 0 0 0

ab 00, 01,10 75
0 1 1 0 ac 00,01, 10 75
1 0 0 1 ad 00, 01, 11 75

bc 00, 11 .50
0 1 1 1

bd 00, 01, 10, 11 1.0

/ 00, 01, 10, 11 1.0

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

19 combinations
included in test set

Kuhn, D. R., Mendoza, |. D., Kacker, R. N., & Lei, Y.
(2013). Combinatorial coverage measurement concepts NIST
and applications. 2013 IEEE Sixth Intl Conference on

Software Testing, Verification and Validation Workshops Mrd-nd':odub::

90

Total possible 2-way

ab 00, 01,10 75 combinations = 22 (421) =24
ac 00, 01, 10 75
ad 00, 01, 11 75
bc 00, 11 .50
bd 00,01, 10, 11 1.0 combinations covered =
cd 00,01, 10, 11 1.0 19/24

=0.79

Rearranging
the table:

00 00
01 01 00 00 00

| 1.00
B 10 10 01 01 01 00
| .25
[]

11 11 10 10 11 11
bd cd ab ac ad bc

Graphing Coverage Measurement

00
75 ok
10
11
bd

00
01
10
11
cd

00
01
10
ab

00
01
10
ac

00
01
11
ad

100% coverage of .33 of combinations
75% coverage of .50 of combinations
50% coverage of .16 of combinations

00
11
bc Completeness
1.0
0.8
o
QL
S
£ 0.6
S
2 S = d M,
© » = area under
=] curve
£ =0.79
“ 0.2
0-0 Ll Ll Ll Ll
0.0 0.2 0.4 0.6 o. 1.0
Fraction of parameter combination
Bottom line:
All combinations covered to at
least .50

92

What else does this chart show?

Untested combinations

1'St=

(look for problems here)

Tested combinations => code works for these

S =

93

Spacecraft software example

82 variables, 7,489 tests, conventional test design
(not covering arrays)

-

NN '
0.9 o L
l— L..-b.qb L-----“
0.8 1 L. L
l-h-— l-.- l-----q
0.7 L
Il— 'R li B
% l-—-n— ll-.q-.ﬂl k
s 05 L | L I
O — 2way .- -L L |
0.4 - JEy 1
G e ey ¥
- e 5'\".31'
03 pe— 6wa;' K
0.2
0.1
0
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.50 1.00
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Combinations

Application - Transfer learning
what is the problem?

* Differences inevitably exist between training data sets,
test data sets, and real-world application data

* Further differences exist between data from two or
more different environments

 How do we predict performance of a model trained on
one data set when applied to another?

* New environment
« Changed environment
« Additional possible values

Lanus, E., Freeman, L. J., Kuhn, D. R., & Kacker, R. N. (2021, April).
) etC Combinatorial Testing Metrics for Machine Learning. In 2021 IEEE Int/
) Conference on Software Testing, Verification and Validation Workshops
(ICSTW)

95

Transfer learning — conventional practice

« Randomized selection — but will randomization be
sufficient, especially with smaller data sets?

* Ensure at least one of each object type — but this may
not be representative of object attribute distributions

* Interactions are critical to consider in most ML
problems, especially for safety, but conventional

practice does little to ensure data sets are adequately
representative of interactions

96

Example — image analysis

* Planes in satellite imagery — Kaggle ML data set —
determine if image contains or does not contain an

airplane

« Two data sets — Southern California (SoCal, 21,151
images) or Northern California (NorCal, 10,849 images)

« 12 features, each discretized into 3 equal range bins

£
|l
~

=170 -H.‘.E' el (R]

AN S IR, P 9 G R]
HENY LR YHNDVIER] IIIIA'*"" "
I T O 2 ot I ™ A L A 7 RN T

e J‘IIIIY O 1 b T | ek af

EEIFENEEN T RN r.lh?"al."al!

97

Transfer learning problem

Train model on one set, apply to the other set
Problem —

* Model trained on larger, SoCal data applied to
smaller, NorCal data - performance drop

* Model trained on smaller, NorCal data applied to
larger, SoCal data - NO performance drop

This seems backwards!
Isn’t it better to have more data?
Can we explain this and predict it next time?

11 10

Density of combinations in one but not the
other data set, 2-way

Interactions in Southern \ Northern Interactions in Northern \ Southern

In Difference
o
—
~
m
<
"2}
In Intersection
o
~
| - Not in Set
0 1 2 < 4 5

0 1 2 3 -+ 5

1 10 9 8

Image from Combinatorial Testing Metrics for Machine Learning, Lanus, Freeman, Kuhn, Kacker, IWCT 2021

For C =SoCal, N = NorCal,
|[C\N]| / |C| =0.02
IN\C| / IN| =0.12

The NorCal data set has fewer “never seen”
combinations, even with half as many
observations

99

Summary

e Software failures are triggered by a small number of
factors interacting — 1 to 6 in known cases

* Therefore covering all t-way combinations, for small t, is
pseudo-exhaustive and provides strong assurance

e Strong t-way interaction coverage can be provided using
covering arrays

* Combinatorial testing is practical today using existing
tools for real-world software

* Combinatorial methods have been shown to provide
significant cost savings with improved test coverage,
and proportional cost savings increases with the size
and complexity of problem

Please contact us
if you’re interested!

Rick Kuhn, Raghu Kacker, M.S. Raunak
{kuhn, raghu.kacker, raunak}@nist.gov

http://csrc.nist.gov/acts

NIST

National Institute of
Standards and Technology

