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What is NIST and why are we doing this?
• US Government agency, whose mission is to support US industry 

through developing better measurement and test methods  

• 3,000 scientists, engineers, and staff including 4 Nobel laureates

• Project goal – improve cost-benefit ratio for testing  



Background



Why combinatorial testing?  - examples
• Cooperative R&D Agreement w/ Lockheed Martin

• 2.5 year study,  8 Lockheed Martin pilot 
projects in aerospace software

• Results: save 20% of test costs; 
increase test coverage by 20% to 50%

Average software:  testing typically 50% of total dev cost
Civil aviation:  testing >85% of total dev cost  (NASA rpt)

• Rockwell Collins applied NIST method and 
tools on testing to FAA life-critical 
standards
• Found practical for industrial use
• Enormous cost reduction 



Applications
Software testing – primary application of these methods

• functionality testing and security vulnerabilities
• approx 2/3 of vulnerabilities from implementation faults

>> systems with a large number of factors that interact <<

Modeling and simulation – ensure coverage of complex cases 
• measure coverage of traditional Monte Carlo sim
• faster coverage of input space than randomized input

Performance tuning – determine most effective combination 
of configuration settings among a large set of factors



What is the empirical basis?
• NIST studied software failures in 15 years of 

FDA medical device recall data
• What causes software failures?
• logic errors? calculation errors? inadequate 

input checking?   interaction faults?   Etc. 

Interaction faults:  e.g.,  failure occurs if
altitude = 0 && volume < 2.2
(interaction between 2 factors)

So this is a  2-way interaction
=> testing all pairs of values can find this fault 



How are interaction faults distributed?
• Interactions   e.g.,  failure occurs if

pressure < 10 (1-way interaction)
pressure < 10 & volume > 300 (2-way interaction) 
pressure < 10 & volume > 300 & velocity = 5       (3-way interaction)

 
• Surprisingly, no one had looked at interactions > 2-way before 
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65% of faults caused by single factor

96% of faults caused by single factor or 2-way interactions

Interesting, but that's 
just one kind of 
application!



Server

These faults 
more complex 
than medical 
device 
software!!

Why?
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Browser

Curves appear 
to be similar 
across a variety 
of application 
domains.
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NASA distributed database

Note: initial 
testing
but ….
Fault profile 
better than 
medical 
devices!
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MySQL
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TCP/IP
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Various domains collected

• Number of factors involved in failures is small
• No failure involving more than 6 variables has been seen
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Average (unweighted)



What causes this distribution?  

One clue:  branches in avionics software.
7,685 expressions from if and while statements



Comparing with Failure Data
Branch 
statements

• Distribution of t-way faults in untested software seems to be similar 
to distribution of t-way branches in code

• Testing and use push curve down as easy (1-way, 2-way) faults found



Distribution of failures by number of interacting 
variables

Interaction rule:  most failures caused by 
one factor or two interacting; 
progressively fewer by ≥ 3 variables 
interacting

• No failures involving more than 6 
variables among these

• Untested (database) or smaller user base 
applications (med devices) have simpler 
faults than heavily used applications 
(browser, server, SQL) 



Why does this distribution occur?

Intuitively, simpler faults should be more common than complex 
faults; should take longer to find complex faults

Can we develop a quantitative model?

• Start with two assumptions:
• t-way faults occur in proportion to t-way conditions in 

code
• t-way faults are removed in proportion to t-way 

combinations in inputs

• Do these assumptions reproduce the empirical data?



Branch condition data for t-way 
conditions in code
- 7,685 predicates from four avionics 
applications 
- 400,811 predicates from 6.03 million lines 
of code in 63 Java open source applications 
- does not consider effects of nesting

 
If t-way faults are removed in 
proportion to t-way combinations in 
inputs:

What will that look like over time as 
faults are removed? t: 1 2 3 4 5 6 7 8

Avionics 74.1 19.6 4.5 1.2 .3 .1 .1 .1
Java 88.5 9.5 1.4 .4 .1 .1 0 0



Quantify the model parameters
Each set of inputs includes 𝐶 𝑛, 𝑡  combinations at each level 

of t, for n variables 

• total number of combination settings is 𝑣!×𝐶 𝑛, 𝑡 , so each 
test or input set can cover at most 1/𝑣! of the total number of 
settings 

• (t+1)-way combinations covered at rate of	𝑣"(!$%)/𝑣"! =	1/𝑣 
of the proportion of t-way combinations

• if 1-way faults are removed at some rate r for some number 
of test sets, then the proportion remaining after k sets will be 
(1–r)k 



Now what happens with 2-way, 3-way, etc. faults?
Discovery of a t-way fault depends on the presence of t-way 

combinations in input
• (t+1)-way combinations 1/v of t-way combinations
• so 1-way fault discovery rate r will be reduced by this 

proportion, or r/v for 2-way, r/v2 for 3-way, etc. 
• minimum value of v is 2, and Boolean values are common
• so proportion of remaining t-way faults after k test sets

 = (1 – r/2t-1)k 

How does this distribution evolve as usage or number of test sets, 
k, increases?



Fault distribution as testing progresses
for testing cycles of r=.05; k = 20..100; starting from branch conditions; 

curve moves down and to the right; close to empirical data
Mode
l
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Actual vs. model - average
t =    1 2 3 4 5 6

actual 39.7 77.3 92.8 99.4 100 100
predicted 39.9 76.6 92.2 97.8 99.4 100

• Comparing model with average 
of reported t-way faults

• Determined k such that actual at 
t = 1 matches model at t = 1

• Values for t = 2 ..6 predicted by 
model

• Close match suggests 
assumptions are appropriate

• note this is approximately a 
Pareto distribution with	𝛼 = 1.5
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Actual vs. model – individual system

• Evolution of Apache server t-way 
faults for period 1 (2001-2002) 
through period 2 (2002-2006)

1-way 2-way 3-way 4-way 5-way 6-way

Rpt - 2002 41 29 19 7 0 4

Rpt - 2006 9 38 28 22 3 0

k=54 test sets 9.1 26.2 34.1 17.8 0 13

• Determined k tests such that actual 
for period 2 at t = 1 matches model 
at t = 1

• Values for t = 2 ..6 predicted by 
model
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Model evolution of 
number of faults at t=1..6
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• initial population of 1,000 
faults

• initial distribution matches 
branch condition distribution

• simple faults decline much 
faster than more complex 
faults, as seen in practice 

1-way faults

t-way faults  =   Ft(1 – r/vt-1)k

for
v = 2
r = .05
k = 0..20

t Ft %
1 74.1
2 19.6
3 4.5
4 1.2
5 0.3
6 0.1



Relationship with Reliability Growth Models

Goel-Okumoto, where 
μ(n) = expected number of defects detected at time n:

 μ(n) = a(1 - e-bn)
for 

a = initial number of defects
n = execution time
b = rate at which failure rate decreases

assumes: cumulative number of failures follows a Poisson process 



How is this related to our model?

t-way fault evolution model:  proportion of remaining t-way faults after k 
test sets   
≈  (1 – r/2t-1)k  

• so if μ(n) is expected number of defects detected at time n
• then  μ(n) = a(1 - (1 – r/2t-1)k)  in our model

• so for single-factor faults this reduces to
 μ(n) = a(1 - (1 – r)k) 
         ≈ a(1 - e-kr )  which is equivalent to Goel-Okumoto

• with rt = r/2t-1 we have basic exponential model for each level of t
• so it reproduces standard reliability model without initial assumption of 

Poisson process



Making this 
Knowledge Useful



How does this knowledge help?
Interaction rule: When all faults are triggered by the 
interaction of t or fewer variables, then testing all t-way 
combinations is pseudo-exhaustive and can provide 
strong assurance.

It is nearly always impossible to exhaustively test 
all possible input combinations

The interaction rule says we don’t have to 
(within reason; we still have value 
propagation issues, equivalence 
partitioning, timing issues, 
more complex interactions,  . . . )

Still no silver 
bullet.  Rats!



Testing Interactions:  Design of Experiments
Key features of DoE

– Blocking
– Replication
– Randomization
– Orthogonal arrays to test interactions between factors

Test P1 P2 P3
1 1 1 3
2 1 2 2
3 1 3 1
4 2 1 2
5 2 2 1
6 2 3 3
7 3 1 1
8 3 2 3
9 3 3 2

Each combination 
occurs same number 
of times, usually once.

Example: P1, P2 = 1,2



Orthogonal Arrays for 
Software Testing

Functional (black-box) testing

Hardware-software systems
Identify single and 2-way combination faults

Early papers
Taguchi followers (mid1980’s)
Mandl (1985) Compiler testing
Tatsumi et al (1987) Fujitsu
Sacks et al (1989) Computer experiments
Brownlie et al (1992) AT&T

Generation of test suites using OAs

OATS (Phadke, AT&T-BL)

Results 
good, 
but not 
great.



What’s different about software?

Traditional DoE
• Continuous variable results

• Small number of parameters

• Interactions typically increase
   or decrease output variable

DoE for Software
• Binary result (pass or fail)

• Large number of parameters

• Interactions  affect path
   through program



How do these differences affect 
interaction testing for software?

Not orthogonal arrays, but Covering arrays:  Fixed-value 
CA(N, vk, t) has four parameters N, k, v, t : It is a matrix 
covers every t-way combination at least once

                                Key differences
orthogonal arrays:                      covering arrays:

  

6/15/23 NIST 33

• Combinations occur 
same number of times

• Not always possible to 
find for a particular 
configuration

• Combinations occur 
at least once

• Always possible to find for a 
particular configuration

• Size always ≤ orthogonal 
array



A covering array of 13 tests

Each row is a test:
Each column is 
a parameter:

• Developed 1990s
• Extends Design of Experiments concept
• NP hard problem but good algorithms now 

All triples in only 13 tests, covering         23 = 960 combinations 10
3



• Number of tests:  proportional to vt log n for v values, n
variables, t-way interactions

• Good news: tests increase logarithmically with the number of 
parameters
=> even very large test problems are OK (e.g., 200 parameters)

• Bad news: increase exponentially with interaction strength t
=> select small number of representative values (but we always 
have to do this for any kind of testing) 

How many tests are needed?

However:
• coverage increases 

rapidly
• for 30 boolean variables
• 33 tests to cover all 

3-way combinations
• but only 18 tests to 

cover about 95% of 
3-way combinations



Testing inputs – combinations of 
property values

Suppose we want to test a find-replace function with only two 
inputs: search_string and replacement_string 

How does combinatorial testing make sense in this case?

Problem example from Natl Vulnerability Database:  
2-way interaction fault:  single character search string in 
conjunction with a single character replacement string, which 
causes an "off by one overflow"

Approach:  test properties of the inputs



Some properties for this test
String length:  {0, 1, 1..file_length, >file_length}

Quotes:  {yes, no, improperly formatted quotes}

Blanks:  {0, 1, >1}

Embedded quotes:  {0, 1, 1 escaped, 1 not escaped}

Filename: {valid, invalid}

Strings in command line:  {0, 1, >1}

String presence in file:  {0, 1, >1}

This is 213442= 2,592 possible combinations of parameter 
values. How many tests do we need for pairwise (2-way)? 

We need only 19 tests for pairwise, 67 for 3-way, 218 for 4-way



Testing configurations – combinations of 
settings
• Example:  application to run on any configuration of OS, browser,

protocol, CPU, and DBMS

• Very effective for interoperability testing



Testing Smartphone Configurations

int HARDKEYBOARDHIDDEN_NO; 
int HARDKEYBOARDHIDDEN_UNDEFINED; 
int HARDKEYBOARDHIDDEN_YES;
int KEYBOARDHIDDEN_NO;
int KEYBOARDHIDDEN_UNDEFINED; 
int KEYBOARDHIDDEN_YES;
int KEYBOARD_12KEY;
int KEYBOARD_NOKEYS; 
int KEYBOARD_QWERTY; 
int KEYBOARD_UNDEFINED; 
int NAVIGATIONHIDDEN_NO; 
int NAVIGATIONHIDDEN_UNDEFINED; 
int NAVIGATIONHIDDEN_YES; 
int NAVIGATION_DPAD; 
int NAVIGATION_NONAV; 
int NAVIGATION_TRACKBALL; 
int NAVIGATION_UNDEFINED; 
int NAVIGATION_WHEEL; 

int ORIENTATION_LANDSCAPE; 
int ORIENTATION_PORTRAIT; 
int ORIENTATION_SQUARE; 
int ORIENTATION_UNDEFINED; 
int SCREENLAYOUT_LONG_MASK; 
int SCREENLAYOUT_LONG_NO; 
int SCREENLAYOUT_LONG_UNDEFINED; 
int SCREENLAYOUT_LONG_YES; 
int SCREENLAYOUT_SIZE_LARGE; 
int SCREENLAYOUT_SIZE_MASK; 
int SCREENLAYOUT_SIZE_NORMAL; 
int SCREENLAYOUT_SIZE_SMALL; 
int SCREENLAYOUT_SIZE_UNDEFINED; 
int TOUCHSCREEN_FINGER; 
int TOUCHSCREEN_NOTOUCH; 
int TOUCHSCREEN_STYLUS; 
int TOUCHSCREEN_UNDEFINED;

Some Android configuration options:



Configuration option values
Parameter Name Values # Values

HARDKEYBOARDHIDDEN NO, UNDEFINED, YES 3

KEYBOARDHIDDEN NO, UNDEFINED, YES 3

KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4

NAVIGATIONHIDDEN NO, UNDEFINED, YES 3

NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, 
WHEEL

5

ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4

SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4

SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5

TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

Total possible configurations:

 3 x 3 x 4 x 3 x 5 x 4 x 4 x 5 x 4 = 172,800   



Number of configurations generated for t-way 
interaction testing, t = 2..6

t # Configs % of Exhaustive

2 29 0.02

3 137 0.08

4 625 0.4

5 2532 1.5

6 9168 5.3



Solving the oracle problem

• Problem:  How do we determine the 
expected results for a set of inputs?

• Three approaches using 
combinatorial testing



How do we automate checking 
correctness of output? 

• Creating test data is the easy part!

• How do we check that the code worked correctly 
on the test input?

• Crash testing server or other code to ensure it does not crash for any 
test input (like ‘fuzz testing’)

- Easy but limited value

• Built-in self test with embedded assertions – incorporate assertions in 
code to check critical states at different points in the code, or print out 
important values during execution

• Full scale model-checking using mathematical model of system and 
model checker to generate expected results for each input - expensive 
but tractable



Crash Testing
• Like “fuzz testing” - send packets or other input 
to application, watch for crashes

• Unlike fuzz testing, input is non-random; 
cover all t-way combinations

• May be more efficient - random input generation
requires several times as many tests to cover the 
t-way combinations in a covering array
Limited utility, but can detect 
high-risk problems such as:

- buffer overflows
- server crashes



1 - Embedded Assertions
Assertions check properties of expected result:

ensures balance  == \old(balance) - amount 
&&  \result == balance;

•Reasonable assurance that code works correctly across 
the range of expected inputs

•May identify problems with handling unanticipated inputs

•Example:   Smart card testing
• Used Java Modeling Language (JML) assertions
• Detected 80% to 90% of flaws



2 - model checking to produce tests

The system can never 
get in this state!

Yes it can, and 
here’s how …

l Model-checker test 
production:  
if assertion is not true, 
then a counterexample 
is generated.  

l This can be 
converted to a test 
case.

Black & Ammann, 1999



Testing inputs
| Traffic Collision Avoidance 

System (TCAS) module
• Used in previous testing research
• 41 versions seeded with errors
• 12 variables: 7 boolean, two 3-value, one 4-

value, two 10-value
• All flaws found with 5-way coverage
• Thousands of tests - generated by model 

checker in a few minutes



Model checking example
-- specification for a portion of tcas - altitude separation.
-- The corresponding C code is originally from Siemens Corp. Research
-- Vadim Okun 02/2002
MODULE main
VAR

Cur_Vertical_Sep : { 299, 300, 601 };
High_Confidence : boolean;

...
init(alt_sep) := START_;

next(alt_sep) := case
enabled & (intent_not_known | !tcas_equipped) : case

need_upward_RA & need_downward_RA : UNRESOLVED;
need_upward_RA : UPWARD_RA;
need_downward_RA : DOWNWARD_RA;
1 : UNRESOLVED;

esac;
1 : UNRESOLVED;

esac;
...
SPEC AG ((enabled & (intent_not_known | !tcas_equipped) & 
!need_downward_RA & need_upward_RA) -> AX (alt_sep = UPWARD_RA))
-- “FOR ALL executions, 
-- IF enabled & (intent_not_known .... 
-- THEN in the next state alt_sep = UPWARD_RA”



Computation Tree Logic
The usual logic operators,plus temporal:

A φ - All: φ holds on all paths starting from the 
current state.

E φ - Exists: φ holds on some paths starting from 
the current state.

G φ - Globally: φ has to hold on the entire 
subsequent path.

F φ - Finally: φ eventually has to hold 
X φ - Next: φ has to hold at the next state
[others not listed]

execution paths
states on the execution paths

SPEC AG ((enabled & (intent_not_known | 
!tcas_equipped) & !need_downward_RA & need_upward_RA) 
-> AX (alt_sep = UPWARD_RA))

“FOR ALL executions, 
IF enabled & (intent_not_known .... 
THEN in the next state alt_sep = UPWARD_RA”



What is the most effective way to integrate 
combinatorial testing with model checking?

• Given AG(P -> AX(R))
“for all paths, in every state, 

if P then in the next state, R holds”

• For k-way variable combinations, v1 & v2 & ... & 
vk 

• vi abbreviates “var1 = val1”

• Now combine this constraint with assertion to produce 
counterexamples.  Some possibilities:

1. AG(v1 & v2 & ... & vk & P -> AX !(R))

2. AG(v1 & v2 & ... & vk -> AX !(1))

3. AG(v1 & v2 & ... & vk -> AX !(R))



What happens with these assertions?
1. AG(v1 & v2 & ... & vk & P -> AX !(R))

P may have a negation of one of the vi, so we get 
0 -> AX !(R))

always true, so no counterexample, no test.
This is too restrictive!

2. AG(v1 & v2 & ... & vk -> AX !(1))
The model checker makes non-deterministic choices for 
variables not in v1..vk, so all R values may not be covered 
by a counterexample.
This is too loose! 

3. AG(v1 & v2 & ... & vk -> AX !(R))
Forces production of a counterexample for each R.
This is just right!



Tests generated
t

2-way:     
3-way:       
4-way:     
5-way:     
6-way:

0

2000

4000

6000

8000

10000

12000

2-way 3-way 4-way 5-way 6-way

T
e
s
ts

Test cases
156
461

1,450
4,309

11,094



Results

Detection Rate for TCAS Seeded 
Errors
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• But errors harder to detect than real-world examples

Tests per error

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

2 w ay 3 w ay 4 w ay 5 w ay 6 w ay

Fault Interaction level
T

es
ts Tests per error

Bottom line for model checking based combinatorial testing:
Expensive but can be highly effective



Tradeoffs
l Advantages

- Tests rare conditions
- Produces high code coverage
- Finds faults faster
- May be lower overall testing cost

l Disadvantages
- Expensive at higher strength interactions (>4-way)
- May require high skill level in some cases (if formal 

models are being used)



Background     k-DNF form

k-DNF =  disjunctive normal form expression where no 
term contains more than k variables

For example, abc + de contains two terms, one with 
three literals and one with two, so the expression is in 
3-DNF form.

 A 3-way covering array contains every possible setting 
of any 3 variables, as shown in previous slide

3 - Rule based systems testing



Example

if (a && (c && !d ||e))  R1;
 else if (!a && b && !c)  R2;
 else exit();

(a(cd̅ +e) → R1)   ç if (a && (c && !d ||e))  R1;
(a̅ b c̅ → R2)    ç  else if (!a && b && !c)  R2;
((∼(a(cd̅ +e)))(∼(a̅ b c̅ )) → exit) ç  else exit();

Rules map to 
logic expressions



Example:  where covering arrays come in

variables: employee , age, first_aid_training, EMT_cert, med_degree 
rule: “If subject is an employee AND 18 or older  AND has first aid training 

OR an EMT certification OR a medical degree, then authorize”
policy: 

emp && age > 18 && (fa || emt || med)  →  authorize     (result1)
else  →  deny     (result2)

(emp && age > 18 && fa) ||   
 (emp && age > 18 && emt) ||
 (emp && age > 18 && med) 

3-DNF  so a 3-way covering 
array will include these



Rule Based System Testing
conventional:  

 “use cases” verifying important or common situations
 often ad hoc
 may not be sufficiently thorough for high assurance

model-based:  
rules à formal model à model checker or other à test 

cases
usually based on fault model;  mutation testing



Exhaustively test the inputs on which an output is 
dependent

convert rule antecedents to k-DNF form, producing 
sets of k or fewer attributes that will produce a 
particular result

generate separate k-way covering arrays for 
combinations that should produce each result

Pseudo-exhaus=ve tes=ng of rules





Positive testing  (the easy part)

test set PTEST:  every test should produce resulti 

for any input where some combination of k input values 
matches a resulti condition, a decision of resulti is returned. 

Construct test set PTEST with one test for each term of R :

PTESTi =  𝑇!#
"#!

~𝑇"

one test for each term in access control rule antecedents, 
with constraint removing any combination that would mask 
a fault 

example:  testing that ab results in resulti, for ab + cd →resulti, 
enforce constraint ~(cd)



Negative testing  (the hard part)

test set NTEST = covering array of strength k, for the 
set of attributes included in rules Ri for a 
particular resulti

constraints specified by ~ Ri

ensures testing of all conditions that do not produce 
resulti



Fault detection properties 

Tests from GTEST and DTEST will detect added, deleted, or altered faults 
with up to k attributes

If more than k attributes are included in faulty term F, some faults are 
still detected, for number of attributes j > k

j > k and correct term C is not a subset of F:   detected by GTEST

j > k and C is a subset of F:  not detected by DTEST;  possibly detected by 
GTEST;  higher strength covering arrays for DTEST can detect



Real world example

HIPAA text: “(g)(1) Standard: Personal 
representatives. As specified in this paragraph, a 
covered entity must, except as provided in 
paragraphs (g)(3) and (g)(5) of this section, treat 
a personal representative as the individual for 
purposes of this subchapter. 
(2) Implementation specification: adults and 
emancipated minors. If under applicable law a 
person has authority to act on behalf of an 
individual who is an adult or an emancipated 
minor in making decisions related to health care, 
a covered entity must treat such person as a 
personal representative under this subchapter, 
with respect to protected health information 
relevant to such personal representation. 
(3)(i) Implementation specification: 
unemancipated minors. If under applicable law a”        
. . . etc.  . . . for 349 pages . . . 

mapped 324 words to rules and attributes  (about 
0.2% of total)

Text Attributes

(A) The {minor consents : mc} to such health care 
service; no {other consent : oc} to such health care 
service is required by law, regardless of whether the 
consent of another person has also been obtained; and 
the minor has not {requested that such person : mr} 
be treated as the personal representative;

expression:
mc && ~oc && ~mr

attribute sets:
{mc, ~oc,  ~mr}

(B) The {minor may lawfully obtain : lo} such health 
care service without the consent of a parent, guardian, 
or other person acting in loco parentis, and the {minor 
: mc}, a {court : cc}, or {another person : oc} 
authorized by law consents to such health care service;

expression:
lo && (mc||cc||oc)
= lo && mc || lo && cc || 
lo && oc

attribute sets:
{lo, mc}, {lo, cc}, 
{lo, oc}

(C) A {parent, guardian, or other person acting in loco 
parentis assents to an agreement of confidentiality : 
pc}

expression: pc

attribute sets:
{pc}



Generating test sets

Rules:  mc && ~oc && ~mr || 
lo && (mc || cc || oc) || pc → 
grant

To 3-DNF:

mc && ~oc && ~mr || 
lo&&mc || lo&&cc || lo&&oc || 
pc → grant

 

! mc!oc! mr! lo! cc! pc!
1! 1! 0! 0! 0! 0! 0!
2! 1! 0! 1! 1! 0! 0!
3! 0! 1! 0! 1! 0! 0!
4! 0! 0! 0! 1! 1! 0!
5! 0! 0! 0! 0! 0! 1!

 

! mc! oc!mr! lo! cc! pc!
1! 0! 0! 0! 0! 0! 0!
2! 0! 0! 1! 1! 0! 0!
3! 0! 1! 0! 0! 1! 0!
4! 0! 1! 1! 0! 0! 0!
5! 1! 0! 1! 0! 1! 0!
6! 1! 1! 0! 0! 0! 0!
7! 1! 1! 1! 0! 1! 0!
8! 0! 0! 0! 1! 0! 0!
9! 0! 0! 0! 0! 1! 0!
10! 1! 0! 1! 0! 0! 0!
11! 1! 1! 0! 0! 1! 0!
12! 0! 1! 1! 0! 1! 0!

GTEST! DTEST!
 

Ptest Ntest



Real world 
Applications



Application - Web browser –
validating interaction rule

• DOM is a World Wide Web 
Consortium standard for 
representing and interacting 
with browser objects

• NIST developed conformance 
tests for DOM

• Tests covered all possible 
combinations of discretized 
values, >36,000 tests

• Question: can we use the 
Interaction Rule to increase 
test effectiveness the way we 
claim? 



Document Object Model Events
Original test set:

Event Name Param.
     

Tests
Abort 3 12
Blur 5 24
Click 15 4352
Change 3 12
dblClick 15 4352
DOMActivate 5 24
DOMAttrModified 8 16
DOMCharacterDataMo
dified

8 64

DOMElementNameCha
nged

6 8

DOMFocusIn 5 24
DOMFocusOut 5 24
DOMNodeInserted 8 128
DOMNodeInsertedIntoD
ocument

8 128

DOMNodeRemoved 8 128
DOMNodeRemovedFrom
Document

8 128

DOMSubTreeModified 8 64
Error 3 12
Focus 5 24
KeyDown 1 17
KeyUp 1 17

Load 3 24
MouseDown 15 4352
MouseMove 15 4352
MouseOut 15 4352
MouseOver 15 4352
MouseUp 15 4352
MouseWheel 14 1024
Reset 3 12
Resize 5 48
Scroll 5 48
Select 3 12
Submit 3 12
TextInput 5 8
Unload 3 24
Wheel 15 4096
Total Tests 36626

Exhaustive testing of 
equivalence class values



Document Object Model Test Results
Combinatorial test set:

t Tests % of 
Orig.

Test Results

Pass Fail

2 702 1.92% 202 27
3 1342 3.67% 786 27
4 1818 4.96% 437 72
5 2742 7.49% 908 72

6 4227 11.54
% 1803 72

All failures found using < 5% of 
original exhaustive test set



Integrating Combinatorial Testing 
into Test Operations

• Test suite development
• Generate covering arrays for tests

OR
• Measure coverage of existing tests 

and supplement

• Training
• Testing textbooks – Ammann & 

Offutt, Mathur
• Combinatorial testing tutorial
• User manuals
• Worked examples
• Book – Introduction to 

Combinatorial Testing textbook



Combinatorial Testing Tradeoffs
l Advantages

- Tests rare conditions
- Produces high code coverage
- Finds faults faster
- May be lower overall testing cost

l Disadvantages
- Expensive at higher strength interactions (>4-way)
- May require high skill level in some cases (if formal 

models are being used)



Example:  Network Simulation
• “Simured” network simulator

• Kernel of ~ 5,000 lines of C++ (not including GUI)

• Objective:  detect configurations that can 
produce deadlock:

• Prevent connectivity loss when changing network
• Attacks that could lock up network

• Compare effectiveness of random vs. 
combinatorial inputs

• Deadlock combinations discovered
• Crashes in >6% of tests w/ valid values (Win32 

version only)

Application - Modeling & Simulation 



Simulation Input Parameters
Parameter Values

1 DIMENSIONS 1,2,4,6,8
2 NODOSDIM 2,4,6
3 NUMVIRT 1,2,3,8
4 NUMVIRTINJ 1,2,3,8
5 NUMVIRTEJE  1,2,3,8
6 LONBUFFER  1,2,4,6
7 NUMDIR 1,2
8 FORWARDING  0,1
9 PHYSICAL true, false
10 ROUTING 0,1,2,3
11 DELFIFO   1,2,4,6
12 DELCROSS   1,2,4,6
13 DELCHANNEL   1,2,4,6
14 DELSWITCH 1,2,4,6

5x3x4x4x4x4x2x2
x2x4x4x4x4x4
= 31,457,280
configurations

Are any of them 
dangerous?

If so, how many?

Which ones?



Network Deadlock Detection
Deadlocks 
Detected: 

combinatorial

t Tests 500 pkts
1000 
pkts

2000 
pkts

4000 
pkts

8000 
pkts

2 28 0 0 0 0 0
3 161 2 3 2 3 3
4 752 14 14 14 14 14

Average Deadlocks Detected:
random

t Tests 500 pkts
1000 
pkts

2000 
pkts

4000 
pkts

8000 
pkts

2 28 0.63 0.25 0.75 0. 50 0. 75
3 161 3 3 3 3 3
4 752 10.13 11.75 10.38 13 13.25



Network Deadlock Detection
Detected 14 configurations that can cause deadlock:

14/ 31,457,280 = 4.4 x 10-7

Combinatorial testing found more deadlocks than 
random, including some that might never have been 
found with random testing

Why do this testing?  Risks:
• accidental deadlock configuration:  low
• deadlock config discovered by attacker:  much higher

(because they are looking for it)



Application - Combinatorial Security Testing

Large scale automated software testing for security
• Complex web applications

• Linux kernels
• Protocol testing & crypto alg. validation
• Hardware Trojan horse (HTH) detection



Web security: Models for vulnerabilities



Sample of XSS and SQLi vulnerabilities found



Sample of XSS and SQLi vulnerabilities found



Application - SCAs for browser fingerprinting
• Identification of user browser can be used offensively/defensively
• Custom TLS handshakes are created using SCAs

• Classification based only on behavior analysis



SCAs for browser fingerprinting: evaluation



New Areas and 
Next Steps



Software safety assurance is already very expensive

Consumer level software cost: 
about 50% code development, 
50% verification

For aviation life-critical, 
12% code development, 
88% verification 
(Software is about 30% of 
cost for new civilian aircraft, 
higher for military)

Autonomy makes the 
problem even harder!

83

Application - Autonomous Systems



Why can’t we use same 
processes as other safety-critical 
software ?

• Life-critical aviation software 
requires MCDC testing, white-box 
criterion that cannot be used for 
neural nets and other black-box 
methods

• Nearly all conventional software 
testing is based on structural 
coverage – ensuring that 
statements, decisions, paths are 
covered in testing

84



Code coverage works well - for conventional software
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Can we use code coverage for machine learning?

• Much of AI/ML depends 
on various neural nets

• Algorithm and code 
stays the same

• Connections and 
weights vary

• Behavior changes 
depending on inputs 
used in training

86



To monitor and guard input space, 
need to measure

• We can measure “neuron coverage”, but indirect measure and 
not clear how closely related to accuracy and ability to 
correctly process all of the input space

• Measure the input space 
directly

• Then see if the AI system 
handles all of it correctly

• Gold standard of assurance and verification of life-critical 
software can’t be used for much of new life-critical autonomy 
software

Nobody at the 
wheel …
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But can they do it under 
all kinds of conditions ?

The problem is 
harder outside of a 
constrained 
environment

It doesn’t take much 
intelligence to drive a 
car.  

Even rats can do it!
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Things get tricky as the scene becomes complex

•Multiple conditions involved in accidents
• "The camera failed to recognize the white truck 

against a bright sky”

• "The sensors failed to pick up street signs, lane 
markings, and even pedestrians due to the angle of 
the car shifting in rain and the direction of the sun”

• We need to understand what combinations of 
conditions are included in testing

89



Combinatorial value coverage

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations 

Vars Combination values Coverage

a b 00, 01, 10             .75

a c 00, 01, 10      .75

a d 00, 01, 11      .75

b c 00, 11        .50

b d 00, 01, 10, 11    1.0

c d 00, 01, 10, 11     1.0

a b c d

0 0 0 0

0 1 1 0

1 0 0 1

0 1 1 1

19 combinations 
included in test set

Kuhn, D. R., Mendoza, I. D., Kacker, R. N., & Lei, Y. 
(2013). Combinatorial coverage measurement concepts 
and applications. 2013 IEEE Sixth Intl Conference on 
Software Testing, Verification and Validation Workshops
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Rearranging 
the table:

1.00 00 00
.75 01 01 00 00 00
.50 10 10 01 01 01 00
.25 11 11 10 10 11 11

bd cd ab ac ad bc

Vars Combination values Coverage

a b 00, 01, 10             .75

a c 00, 01, 10      .75

a d 00, 01, 11      .75

b c 00, 11        .50

b d 00, 01, 10, 11    1.0

c d 00, 01, 10, 11     1.0

Total possible 2-way 
combinations = 2! 4

2 = 24

S2 = fraction of 2-way 
combinations covered = 
19/24 
= 0.79
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Graphing Coverage Measurement 

100% coverage of .33 of combinations
75% coverage of .50 of combinations
50% coverage of .16 of combinations 

Bottom line:
All combinations covered to at 
least .50

1.00 00 00
.75 01 01 00 00 00
.50 10 10 01 01 01 00
.25 11 11 10 10 11 11

bd cd ab ac ad bc

S2 = area under 
curve 
= 0.79

M2
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What else does this chart show?

St = Tested combinations => code works for these 

1 - St = Untested combinations
(look for problems here)
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Spacecraft software example
82 variables, 7,489 tests, conventional test design 
(not covering arrays)



Application - Transfer learning  
what is the problem?

• Differences inevitably exist between training data sets, 
test data sets, and real-world application data

• Further differences exist between data from two or 
more different environments

• How do we predict performance of a model trained on 
one data set when applied to another?

• New environment
• Changed environment
• Additional possible values
• etc.

Lanus, E., Freeman, L. J., Kuhn, D. R., & Kacker, R. N. (2021, April). 
Combinatorial Testing Metrics for Machine Learning. In 2021 IEEE Intl 
Conference on Software Testing, Verification and Validation Workshops 
(ICSTW)
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Transfer learning – conventional practice

• Randomized selection – but will randomization be 
sufficient, especially with smaller data sets?

• Ensure at least one of each object type – but this may 
not be representative of object attribute distributions

•    Interactions are critical to consider in most ML 
problems, especially for safety, but conventional 
practice does little to ensure data sets are adequately 
representative of interactions
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Example – image analysis
• Planes in satellite imagery – Kaggle ML data set – 

determine if image contains or does not contain an 
airplane

• Two data sets – Southern California (SoCal, 21,151 
images) or Northern California (NorCal, 10,849 images)

• 12 features, each discretized into 3 equal range bins
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Transfer learning problem

• Train model on one set, apply to the other set
• Problem – 

• Model trained on larger, SoCal data applied to 
smaller, NorCal data à performance drop 

• Model trained on smaller, NorCal data applied to 
larger, SoCal data à NO performance drop 

• This seems backwards!
• Isn’t it better to have more data?
• Can we explain this and predict it next time?
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Density of combinations in one but not the 
other data set, 2-way

Image from Combinatorial Testing Metrics for Machine Learning,  Lanus, Freeman, Kuhn, Kacker, IWCT 2021

For C = SoCal, N = NorCal,
|C\N| / |C| = 0.02
|N\C| / |N| = 0.12 

The NorCal data set has fewer “never seen” 
combinations, even with half as many 
observations
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Summary
• Software failures are triggered by a small number of 

factors interacting – 1 to 6 in known cases

• Therefore covering all t-way combinations, for small t, is 
pseudo-exhaustive and provides strong assurance

• Strong t-way interaction coverage can be provided using 
covering arrays

• Combinatorial testing is practical today using existing 
tools for real-world software

• Combinatorial methods have been shown to provide 
significant cost savings with improved test coverage, 
and proportional cost savings increases with the size 
and complexity of problem



Rick Kuhn, Raghu Kacker, M.S. Raunak
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